forked from roboleary/LeapTrainer.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleaptrainer.js
1346 lines (1036 loc) · 40.8 KB
/
leaptrainer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* The MIT License (MIT)
*
* Copyright (c) 2013 Robert O'Leary
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ------------------------------------------- NOTE -------------------------------------------
*
* The default recognition function in this version of LeapTrainer is geometric template matching.
*
* The implementation below is based on work at the University of Washington, described here:
*
* http://depts.washington.edu/aimgroup/proj/dollar/pdollar.html
*
* This implementation has been somewhat modified, functions in three dimensions, and has been
* optimized for performance.
*
* --------------------------------------------------------------------------------------------
*/
/**
* Create the LeapTrainer namespace.
*/
var LeapTrainer = {};
/**
* Create the basic class structure.
*
* This root class provides the inheritance mechanism for defining alternative implementations as sub-classes of
* the LeapTrainer.Controller. For example:
*
* LeapTrainer.SVMController = LeapTrainer.Controller.extend({
*
* recognize: function(gesture, frameCount) { ...Match using support vector machines... });
* });
*
* To call an overidden function, use "this._super". For example:
*
* LeapTrainer.FrameLoggingController = LeapTrainer.Controller.extend({
*
* recordFrame: function(frame, lastFrame, recordVector, recordValue) {
*
* this._super(options); //Calls the LeapController.recordFrame function
*
* this.logFrame(frame);
* });
* });
*/
(function() {
var initializing = false, fnTest = /xyz/.test(function() { xyz; }) ? /\b_super\b/ : /.*/;
/*
* We create the base Class implementation and give it an 'extend' method
*/
this.Class = function() {};
Class.extend = function(prop) {
var _super = this.prototype;
initializing = true, prototype = new this(); //Instantiate a base class - but don't run the initialization function yet
initializing = false;
/*
* Copy the properties over onto the new prototype
*/
for (var name in prop) {
/*
* Check if we're overwriting an existing function
*/
prototype[name] = typeof prop[name] == "function" && typeof _super[name] == "function" && fnTest.test(prop[name]) ? (function(name, fn) {
return function() {
var tmp = this._super;
this._super = _super[name]; // Add a new ._super() method that is the same method but on the super-class
var ret = fn.apply(this, arguments); // The method only need to be bound temporarily, so we remove it when we're done executing
this._super = tmp;
return ret;
};
})(name, prop[name]) : prop[name];
}
/*
* This is root class constructor. All the construction work is actually done in the initialize method.
*/
function Class() { if (!initializing && this.initialize) { this.initialize.apply(this, arguments); }}
Class.prototype = prototype; //Populate our constructed prototype object
Class.prototype.constructor = Class; //Enforce the constructor to be what we expect
Class.extend = arguments.callee; //And make this class extendable
Class.overidden = prop; //And store the list of overridden fields
return Class;
};
})();
/**
* Now we get to defining the base LeapTrainer Controller. This class contains the default implementations of all functions.
*
* The constructor accepts an options parameter, which is then passed to the initialize in order to set up the object.
*
*/
LeapTrainer.Controller = Class.extend({
controller : null, // An instance of Leap.Controller from the leap.js library. This will be created if not passed as an option
pauseOnWindowBlur : false, // If this is TRUE, then recording and recognition are paused when the window loses the focus, and restarted when it's regained
minRecordingVelocity : 300, // The minimum velocity a frame needs to clock in at to trigger gesture recording, or below to stop gesture recording (by default)
maxRecordingVelocity : 30, // The maximum velocity a frame can measure at and still trigger pose recording, or above which to stop pose recording (by default)
minGestureFrames : 5, // The minimum number of recorded frames considered as possibly containing a recognisable gesture
minPoseFrames : 75, // The minimum number of frames that need to hit as recordable before pose recording is actually triggered
recordedPoseFrames : 0, // A counter for recording how many pose frames have been recorded before triggering
recordingPose : false,// A flag to indicate if a pose is currently being recorded
hitThreshold : 0.65, // The correlation output value above which a gesture is considered recognized. Raise this to make matching more strict
trainingCountdown : 3, // The number of seconds after startTraining is called that training begins. This number of 'training-countdown' events will be emit.
trainingGestures : 1, // The number of gestures samples that collected during training
convolutionFactor : 0, // The factor by which training samples will be convolved over a gaussian distribution to expand the available training data
downtime : 1000, // The number of milliseconds after a gesture is identified before another gesture recording cycle can begin
lastHit : 0, // The timestamp at which the last gesture was identified (recognized or not), used when calculating downtime
gestures : {}, // The current set of recorded gestures - names mapped to convolved training data
poses : {}, // Though all gesture data is stored in the gestures object, here we hold flags indicating which gestures were recorded as poses
trainingGesture : null, // The name of the gesture currently being trained, or null if training is not active
listeners : {}, // Listeners registered to receive events emit from the trainer - event names mapped to arrays of listener functions
paused : false,// This variable is set by the pause() method and unset by the resume() method - when true it disables frame monitoring temporarily.
renderableGesture : null, // Implementations that record a gestures for graphical rendering should store the data for the last detected gesture in this array.
/**
* The controller initialization function - this is called just after a new instance of the controller is created to parse the options array,
* connect to the Leap Motion device (unless an existing Leap.Controller object was passed as a parameter), and register a frame listener with
* the leap controller.
*
* @param options
*/
initialize: function(options) {
/*
* The options array overrides all parts of this object - so any of the values above or any function below can be overridden by passing it as a parameter.
*/
if (options) { for (var optionName in options) { if (options.hasOwnProperty(optionName)) { this[optionName] = options[optionName]; };};}
/*
* The current DEFAULT recognition algorithm is geometric template matching - which is initialized here.
*/
this.templateMatcher = new LeapTrainer.TemplateMatcher();
/*
* If no Leap.Controller object was passed on the options array one is created
*/
var connectController = !this.controller;
if (connectController) { this.controller = new Leap.Controller(); }
/*
* The bindFrameListener attaches a function to the leap controller frame event below.
*/
this.bindFrameListener();
/*
* Finally, if no Leap.Controller was passed as a parameter to the trainer constructor, we connect to the device.
*/
if (connectController) { this.controller.connect(); };
},
/**
* The onFrame function is defined below in the bindFrameListener function in order to allow locally scoped variables be
* defined for use on each frame.
*/
onFrame: function () {},
/**
* This function binds a listener to the Leap.Controller frame event in order to monitor activity coming from the device.
*
* This bound frame listener function fires the 'gesture-detected', 'started-recording', and 'stopped-recording' events.
*
*/
bindFrameListener: function () {
/*
* Variables are declared locally here once in order to minimize variable creation and lookup in the high-speed frame listener.
*/
var recording = false, frameCount = 0, gesture = [],
/*
* These two utility functions are used to push a vector (a 3-variable array of numbers) into the gesture array - which is the
* array used to store activity in a gesture during recording. NaNs are replaced with 0.0, though they shouldn't occur!
*/
recordValue = function (val) { gesture.push(isNaN(val) ? 0.0 : val); },
recordVector = function (v) { recordValue(v[0]); recordValue(v[1]); recordValue(v[2]); };
/**
*
*/
this.onFrame = function(frame) {
/*
* The pause() and resume() methods can be used to temporarily disable frame monitoring.
*/
if (this.paused) { return; }
/*
* Frames are ignored if they occur too soon after a gesture was recognized.
*/
if (new Date().getTime() - this.lastHit < this.downtime) { return; }
/*
* The recordableFrame function returns true or false - by default based on the overall velocity of the hands and pointables in the frame.
*
* If it returns true recording should either start, or the current frame should be added to the existing recording.
*
* If it returns false AND we're currently recording, then gesture recording has completed and the recognition function should be
* called to see what it can do with the collected frames.
*
*/
if (this.recordableFrame(frame, this.minRecordingVelocity, this.maxRecordingVelocity)) {
/*
* If this is the first frame in a gesture, we clean up some running values and fire the 'started-recording' event.
*/
if (!recording) {
recording = true;
frameCount = 0;
gesture = [];
this.renderableGesture = [];
this.recordedPoseFrames = 0;
this.fire('started-recording');
}
/*
* We count the number of frames recorded in a gesture in order to check that the
* frame count is greater than minGestureFrames when recording is complete.
*/
frameCount++;
/*
* The recordFrame function may be overridden, but in any case it's passed the current frame, the previous frame, and
* utility functions for adding vectors and individual values to the recorded gesture activity.
*/
this.recordFrame(frame, this.controller.frame(1), recordVector, recordValue);
/*
* Since renderable frame data is not necessarily the same as frame data used for recognition, a renderable frame will be
* recorded here IF the implementation provides one.
*/
this.recordRenderableFrame(frame, this.controller.frame(1));
} else if (recording) {
/*
* If the frame should not be recorded but recording was active, then we deactivate recording and check to see if enough
* frames have been recorded to qualify for gesture recognition.
*/
recording = false;
/*
* As soon as we're no longer recording, we fire the 'stopped-recording' event
*/
this.fire('stopped-recording');
if (this.recordingPose || frameCount >= this.minGestureFrames) {
/*
* If a valid gesture was detected the 'gesture-detected' event fires, regardless of whether the gesture will be recognized or not.
*/
this.fire('gesture-detected', gesture, frameCount);
/*
* Finally we pass the recorded gesture frames to either the saveTrainingGesture or recognize functions (either of which may also
* be overridden) depending on whether we're currently training a gesture or not.
* the time of the last hit.
*/
var gestureName = this.trainingGesture;
if (gestureName) { this.saveTrainingGesture(gestureName, gesture, this.recordingPose);
} else { this.recognize(gesture, frameCount); }
this.lastHit = new Date().getTime();
this.recordingPose = false;
};
};
}; // The frame listener is bound to the context of the LeapTrainer object
/**
* This is the frame listening function, which will be called by the Leap.Controller on every frame.
*/
this.controller.on('frame', this.onFrame.bind(this));
/*
* If pauseOnWindowBlur is true, then we bind the pause function to the controller blur event and the resume
* function to the controller focus event
*/
if (this.pauseOnWindowBlur) {
this.controller.on('blur', this.pause.bind(this));
this.controller.on('focus', this.resume.bind(this));
}
},
/**
* This function returns TRUE if the provided frame should trigger recording and FALSE if it should stop recording.
*
* Of course, if the system isn't already recording, returning FALSE does nothing, and vice versa.. So really it returns
* whether or not a frame may possibly be part of a gesture.
*
* By default this function makes its decision based on one or more hands or fingers in the frame moving faster than the
* configured minRecordingVelocity, which is provided as a second parameter.
*
* @param frame
* @param min
* @returns {Boolean}
*/
recordableFrame: function (frame, min, max) {
var hands = frame.hands, j, hand, fingers, palmVelocity, tipVelocity, poseRecordable = false;
for (var i = 0, l = hands.length; i < l; i++) {
hand = hands[i];
palmVelocity = hand.palmVelocity;
palmVelocity = Math.max(Math.abs(palmVelocity[0]), Math.abs(palmVelocity[1]), Math.abs(palmVelocity[2]));
/*
* We return true if there is a hand moving above the minimum recording velocity
*/
if (palmVelocity >= min) { return true; }
if (palmVelocity <= max) { poseRecordable = true; break; }
fingers = hand.fingers;
for (j = 0, k = fingers.length; j < k; j++) {
tipVelocity = fingers[j].tipVelocity;
tipVelocity = Math.max(Math.abs(tipVelocity[0]), Math.abs(tipVelocity[1]), Math.abs(tipVelocity[2]));
/*
* Or if there's a finger tip moving above the minimum recording velocity
*/
if (tipVelocity >= min) { return true; }
if (tipVelocity <= max) { poseRecordable = true; break; }
};
};
/*
* A configurable number of frames have to hit as pose recordable before actual recording is triggered.
*/
if (poseRecordable) {
this.recordedPoseFrames++;
if (this.recordedPoseFrames >= this.minPoseFrames) {
this.recordingPose = true;
return true;
}
} else {
this.recordedPoseFrames = 0;
}
},
/**
* This function is called for each frame during gesture recording, and it is responsible for adding values in frames using the provided
* recordVector and recordValue functions (which accept a 3-value numeric array and a single numeric value respectively).
*
* This function should be overridden to modify the quality and quantity of data recorded for gesture recognition.
*
* @param frame
* @param lastFrame
* @param recordVector
* @param recordValue
*/
recordFrame: function(frame, lastFrame, recordVector, recordValue) {
var hands = frame.hands;
var handCount = hands.length;
var hand, finger, fingers, fingerCount;
for (var i = 0, l = handCount; i < l; i++) {
hand = hands[i];
recordVector(hand.stabilizedPalmPosition);
fingers = hand.fingers;
fingerCount = fingers.length;
for (var j = 0, k = fingerCount; j < k; j++) {
finger = fingers[j];
recordVector(finger.stabilizedTipPosition);
};
};
},
/**
* This function records a single frame in a format suited for graphical rendering. Since the recordFrame function will capture
* data suitable for whatever recognition algorithm is implemented, that data is not necessarily relating to geometric positioning
* of detected hands and fingers. Consequently, this function should capture this geometric data.
*
* Currently, only the last recorded gesture is stored - so this function should just write to the renderableGesture array.
*
* Any format can be used - but the format expected by the LeapTrainer UI is - for each hand:
*
* { position: [x, y, z],
* direction: [x, y, z],
* palmNormal [x, y, z],
*
* fingers: [ { position: [x, y, z], direction: [x, y, z], length: q },
* { position: [x, y, z], direction: [x, y, z], length: q },
* ... ]
* }
*
* So a frame containing two hands would push an array with two objects like that above into the renderableGesture array.
*
* @param frame
* @param lastFrame
* @param recordVector
* @param recordValue
*/
recordRenderableFrame: function(frame, lastFrame) {
var frameData = [];
var hands = frame.hands;
var handCount = hands.length;
var hand, finger, fingers, fingerCount, handData, fingersData;
for (var i = 0, l = handCount; i < l; i++) {
hand = hands[i];
handData = {position: hand.stabilizedPalmPosition, direction: hand.direction, palmNormal: hand.palmNormal};
fingers = hand.fingers;
fingerCount = fingers.length;
fingersData = [];
for (var j = 0, k = fingerCount; j < k; j++) {
finger = fingers[j];
fingersData.push({position: finger.stabilizedTipPosition, direction: finger.direction, length: finger.length});
};
handData.fingers = fingersData;
frameData.push(handData);
};
this.renderableGesture.push(frameData);
},
/**
* This function is called to create a new gesture, and - normally - trigger training for that gesture.
*
* The parameter gesture name is added to the gestures array and unless the trainLater parameter is present, the startRecording
* function below is triggered.
*
* This function fires the 'gesture-created' event.
*
* @param gestureName
* @param trainLater
*/
create: function(gestureName, skipTraining) {
this.gestures[gestureName] = [];
this.fire('gesture-created', gestureName, skipTraining);
if (typeof skipTraining == 'undefined' || !skipTraining) { this.pause(); this.startTraining(gestureName, this.trainingCountdown); }
},
/**
* This function sets the object-level trainingGesture variable. This modifies what happens when a gesture is detected
* by determining whether we save it as a training gesture or attempting to recognize it.
*
* Since training actually starts after a countdown, this function will recur a number of times before the framework enters
* training mode. Each time it recurs it emits a 'training-countdown' event with the number of recursions still to go. Consequently,
* this function is normally initially called by passing this.trainingCountdown as the second parameter.
*
* This function fires the 'training-started' and 'training-countdown' events.
*
* @param gestureName
* @param countdown
*/
startTraining: function(gestureName, countdown) {
if (countdown > 0) {
this.fire('training-countdown', countdown);
countdown--;
setTimeout(function() { this.startTraining(gestureName, countdown); }.bind(this), 1000);
return;
}
this.resume();
this.trainingGesture = gestureName;
this.fire('training-started', gestureName);
},
/**
* Deletes the set of training gestures associated with the provided gesture name, and re-enters training mode for that gesture.
*
* If the provided name is unknown, then this function will return FALSE. Otherwise it will call the
* startTraining function (resulting in a 'training-started' event being fired) and return TRUE.
*
* @param gestureName
* @returns {Boolean}
*/
retrain: function(gestureName) {
var storedGestures = this.gestures[gestureName];
if (storedGestures) {
storedGestures.length = 0;
this.startTraining(gestureName, this.trainingCountdown);
return true;
}
return false;
},
/**
* For recognition algorithms that need a training operation after training data is gathered, but before the
* gesture can be recognized, this function can be implemented and will be called in the 'saveTrainingGesture' function
* below when training data has been collected for a new gesture.
*
* The current DEFAULT implementation of this function calls a LeapTrainer.TemplateMatcher in order to process the saved
* gesture data in preparation for matching.
*
* Sub-classes that implement different recognition algorithms SHOULD override this function.
*
* @param gestureName
* @param trainingGestures
*/
trainAlgorithm: function (gestureName, trainingGestures) {
for (var i = 0, l = trainingGestures.length; i < l; i++) {
trainingGestures[i] = this.templateMatcher.process(trainingGestures[i]);
}
},
/**
* The saveTrainingGesture function records a single training gesture. If the number of saved training gestures has reached
* 'trainingGestures', the training is complete and the system switches back out of training mode.
*
* This function fires the 'training-complete' and 'training-gesture-saved' events.
*
* @param gestureName
* @param gesture
*/
saveTrainingGesture: function(gestureName, gesture, isPose) {
/*
* We retrieve all gestures recorded for this gesture name so far
*/
var trainingGestures = this.gestures[gestureName];
/*
* Save the newly recorded gesture data
*/
trainingGestures.push(gesture);
/*
* And check if we have enough saved gestures to complete training
*/
if (trainingGestures.length == this.trainingGestures) {
/*
* We expand the training data by generating a gaussian normalized distribution around the input. This increases the
* number of training gestures used during recognition, without demanding more training samples from the user.
*/
this.gestures[gestureName] = this.distribute(trainingGestures);
/*
* Whether or not the gesture was recorded as a pose is stored
*/
this.poses[gestureName] = isPose;
/*
* Setting the trainingGesture variable back to NULL ensures that the system will attempt to recognize subsequent gestures
* rather than save them as training data.
*/
this.trainingGesture = null;
/*
* The trainAlgorithm function provides an opportunity for machine learning recognition systems to train themselves on
* the full training data set before the training cycle completes.
*/
this.trainAlgorithm(gestureName, trainingGestures);
/*
* Finally we fire the 'training-complete' event.
*/
this.fire('training-complete', gestureName, trainingGestures, isPose);
} else {
/*
* If more training gestures are required we just fire the 'training-gesture-saved' event.
*/
this.fire('training-gesture-saved', gestureName, trainingGestures);
}
},
/**
* This function generates a normalized distribution of values around a set of recorded training gestures. The objective of
* this function is to increase the size of the training data without actually requiring the user to perform more training
* gestures.
*
* This implementation generates a gaussian normalized distribution.
*
* @param trainingGestures
* @returns
*/
distribute: function (trainingGestures) {
var factor = this.convolutionFactor;
/*
* If the convolutionFactor is set to zero no distribution is generation.
*/
if (factor == 0) { return trainingGestures; }
var gesture, generatedGesture, value;
/*
* For convolutionFactor times
*/
for (var i = 0, p = factor; i < p; i++) {
/*
* For each training gesture
*/
for (var j = 0, l = trainingGestures.length; j < l; j++) {
gesture = trainingGestures[j];
generatedGesture = [];
/*
* For each value in the training gesture
*/
for (var k = 0, m = gesture.length; k < m; k++) {
value = gesture[k];
/*
* Generate a random point within a normalized gaussian distribution
*/
generatedGesture[k] = Math.round((Math.random()*2 - 1) +
(Math.random()*2 - 1) +
(Math.random()*2 - 1) *
((value * 10000) / 50) + (value * 10000)) / 10000;
}
/*
* Add the generated gesture to the trainingGesture array
*/
trainingGestures.push(generatedGesture);
}
}
/*
* Return the expanded trainingGestures array
*/
return trainingGestures;
},
/**
* This function matches a parameter gesture against the known set of saved gestures.
*
* This function does not need to return any value, but it should fire either the 'gesture-recognized' or
* the 'gesture-unknown' event.
*
* The 'gesture-recognized' event includes a numeric value for the closest match, the name of the recognized
* gesture, and a list of hit values for all known gestures as parameters. The list maps gesture names to
* hit values.
*
* The 'gesture-unknown' event, includes a list of gesture names mapped to hit values for all known gestures
* as a parameter.
*
* If a gesture is recognized, an event with the name of the gesture and no parameters will also be fired. So
* listeners waiting for a 'Punch' gestures, for example, can just register for events using:
*
* trainer.on('Punch').
*
* @param gesture
* @param frameCount
*/
recognize: function(gesture, frameCount) {
var gestures = this.gestures,
threshold = this.hitThreshold,
allHits = {},
hit = 0,
bestHit = 0,
recognized = false,
closestGestureName = null,
recognizingPose = (frameCount == 1); //Single-frame recordings are idenfied as poses
/*
* We cycle through all known gestures
*/
for (var gestureName in gestures) {
/*
* We don't actually attempt to compare gestures to poses
*/
if (this.poses[gestureName] != recognizingPose) {
hit = 0.0;
} else {
/*
* For each know gesture we generate a correlation value between the parameter gesture and a saved
* set of training gestures. This correlation value is a numeric value between 0.0 and 1.0 describing how similar
* this gesture is to the training set.
*/
hit = this.correlate(gestureName, gestures[gestureName], gesture);
}
/*
* Each hit is recorded
*/
allHits[gestureName] = hit;
/*
* If the hit is equal to or greater than the configured hitThreshold, the gesture is considered a match.
*/
if (hit >= threshold) { recognized = true; }
/*
* If the hit is higher than the best hit so far, this gesture is stored as the closest match.
*/
if (hit > bestHit) { bestHit = hit; closestGestureName = gestureName; }
}
if (recognized) {
this.fire('gesture-recognized', bestHit, closestGestureName, allHits);
this.fire(closestGestureName);
} else {
this.fire('gesture-unknown', allHits);
}
},
/**
* This function accepts a set of training gestures and a newly input gesture and produces a number between 0.0 and 1.0 describing
* how closely the input gesture resembles the set of training gestures.
*
* This DEFAULT implementation uses a LeapTrainer.TemplateMatcher to perform correlation.
*
* @param gestureName
* @param trainingGestures
* @param gesture
* @returns {Number}
*/
correlate: function(gestureName, trainingGestures, gesture) {
gesture = this.templateMatcher.process(gesture);
var nearest = +Infinity, foundMatch = false, distance;
for (var i = 0, l = trainingGestures.length; i < l; i++) {
distance = this.templateMatcher.match(gesture, trainingGestures[i]);
if (distance < nearest) {
/*
* 'distance' here is the calculated distance between the parameter gesture and the training
* gesture - so the smallest value indicates the closest match
*/
nearest = distance;
foundMatch = true;
}
}
return (!foundMatch) ? 0.0 : (Math.min(parseInt(100 * Math.max(nearest - 4.0) / -4.0, 0.0), 100)/100.0);
},
/**
* These three functions are used by the training UI to select alternative strategies - sub-classes should override these functions
* with names for the algorithms they implement.
*
* Each function should return a descriptive name of the strategy implemented.
*/
getRecordingTriggerStrategy : function() { return 'Frame velocity'; },
/**
* This is the type and format of gesture data recorded by the recordFrame function.
*/
getFrameRecordingStrategy : function() { return '3D Geometric Positioning'; },
/**
* This is the name of the mechanism used to recognize learned gestures.
*/
getRecognitionStrategy : function() { return 'Geometric Template Matching'; },
/**
* This function converts the requested stored gesture into a JSON string containing the gesture name and training data.
*
* Gestures exported using this function can be re-imported using the fromJSON function below.
*
* @param gestureName
* @returns {String}
*/
toJSON: function(gestureName) {
var gesture = this.gestures[gestureName];
if (gesture) { return JSON.stringify({name: gestureName, pose: this.poses[gestureName] ? true : false, data: gesture}); }
},
/**
* This is a simple import function for restoring gestures exported using the toJSON function above.
*
* It returns the object parsed out of the JSON, so that overriding implementations can make use of this function.
*
* @param json
* @returns {Object}
*/
fromJSON: function(json) {
var imp = JSON.parse(json);
var gestureName = imp.name;
this.create(gestureName, true);
this.gestures[gestureName] = imp.data;
this.poses[gestureName] = imp.pose;
return imp;
},
/**
* This is a standard event registration event - paired with the fire event below, it provides an event-oriented
* mechanism for notifying external components when significant events happen - gestures being matching, training
* cycles starting and ending, etc.
*
* @param event
* @param listener
* @returns {Object} The leaptrainer controller, for chaining.
*/
on: function(event, listener) {
var listening = this.listeners[event];
if (!listening) { listening = []; }
listening.push(listener);
this.listeners[event] = listening;
return this;
},
/**
* This function removes an event listener previously bound using the on() function above.
*
* @param event
* @param listener
* @returns {Object} The leaptrainer controller, for chaining.
*/
off: function(event, listener) {
if (!event) { return this; }
var listening = this.listeners[event];
if (listening) {
listening.splice(listening.indexOf(listener), 1);
this.listeners[event] = listening;
}
return this;
},
/**
* This function is called in various function above in order to notify listening components when the events they're
* registered to hear occur.
*
* This function accepts an arbitrary number of arguments, all of which will be passed on to listening functions except the
* first (so not quite arbitrary.. (arbitrary + 1)), which is the name of the event being fired.
*
* @param event
* @returns {Object} The leaptrainer controller, for chaining.
*/
fire: function(event) {
var listening = this.listeners[event];
if (listening) {
var args = Array.prototype.slice.call(arguments);
args.shift();
for (var i = 0, l = listening.length; i < l; i++) { listening[i].apply(this, args); }
}
return this;
},
/**
* This function temporarily disables frame monitoring.
*
* @returns {Object} The leaptrainer controller, for chaining.
*/
pause: function() { this.paused = true; return this; },
/**
* This function resumes paused frame monitoring.
*
* @returns {Object} The leaptrainer controller, for chaining.
*/
resume: function() { this.paused = false; return this; },
/**
* This function unbinds the controller from the leap frame event cycle - making it inactive and ready
* for cleanup.
*/
destroy: function() { this.controller.removeListener('frame', this.onFrame); }
});
/*!
* --------------------------------------------------------------------------------------------------------
*
* GEOMETRIC TEMPLATE MATCHER
*