-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsubmit.py
120 lines (98 loc) · 3.6 KB
/
submit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import sys
import time
from typing import Any, Dict, List, Tuple, Union
from datetime import datetime
import argparse
import copy
import numpy as np
from importlib import import_module
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from loader import Loader
from utils.utils import AverageMeterForDict
def parse_arguments() -> Any:
"""Arguments for running the baseline.
Returns:
parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument("--mode",
default="test",
type=str,
help="Mode, train/val/test")
parser.add_argument("--features_dir",
required=True,
default="",
type=str,
help="path to the file which has features.")
parser.add_argument("--obs_len",
default=20,
type=int,
help="Observed length of the trajectory")
parser.add_argument("--pred_len",
default=30,
type=int,
help="Prediction Horizon")
parser.add_argument("--model",
default="dsp",
type=str,
help="Name of model")
parser.add_argument("--loss",
default="dsp",
type=str,
help="Type of loss function")
parser.add_argument("--use_cuda",
type=bool,
default=True,
help="Use CUDA for acceleration")
parser.add_argument("--adv_cfg_path",
required=True,
default="",
type=str)
parser.add_argument("--model_path",
required=True,
type=str,
help="path to the saved model")
parser.add_argument("--submitter",
default="argo_dsp",
type=str,
help="Name of submitters")
return parser.parse_args()
def main():
args = parse_arguments()
if args.use_cuda and torch.cuda.is_available():
device = torch.device("cuda", 0)
else:
device = torch.device('cpu')
date_str = datetime.now().strftime("%Y%m%d-%H%M%S")
loader = Loader(args, device, is_ddp=False)
print('[Resume]Loading state_dict from {}'.format(args.model_path))
loader.set_resmue(args.model_path)
test_set, net, _, _, _ = loader.load()
print('Test set size: {}'.format(len(test_set)))
net.eval()
submitters = import_module('{}'.format(args.submitter)).Submitter()
dataloader = DataLoader(test_set,
batch_size=64,
num_workers=8,
shuffle=False,
collate_fn=test_set.collate_fn,
pin_memory=True)
out_vec = []
data_vec = []
with torch.no_grad():
for i, data in enumerate(tqdm(dataloader)):
out = net(data)
post_out = net.post_process(out)
out_vec.append(post_out)
meta = dict()
meta['SEQ_ID'] = copy.deepcopy(data['SEQ_ID']) # batch
meta['ORIG'] = copy.deepcopy(data['ORIG']) # batch x 2
meta['ROT'] = copy.deepcopy(data['ROT']) # batch x 2 x 2
data_vec.append(meta)
submitters.format_and_submit(out_vec, data_vec)
print('\nExit...')
if __name__ == "__main__":
main()