-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQRNN_Minist.py
287 lines (226 loc) · 8.95 KB
/
QRNN_Minist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import math as m
import numpy as np
import pandas as pd
import time
from pyqpanda import *
from pyvqnet.nn.module import Module
from pyvqnet.qnn.quantumlayer import QuantumLayer
from pyvqnet.optim import adam
from pyvqnet.nn.loss import MeanSquaredError
from pyvqnet.tensor import tensor
from pyvqnet.tensor import QTensor
import tensorflow as tf
from tensorflow.keras.utils import normalize
from sklearn.decomposition import PCA
import cv2 as cv
from sklearn import decomposition
start = time.time()
Amplitude = np.array([1, 0, 0, 0, 0, 0, 0, 0]) # 定义振幅为全局变量
'''Step1 量子线路定义'''
# 数据输入U_in矩阵
def U_in(qubits, X_t):
circuit = create_empty_circuit()
theta_in = m.acos(X_t.item())
circuit << RY(qubits[0], theta_in) \
<< RY(qubits[1], theta_in) \
<< RY(qubits[2], theta_in)
return circuit
# 参数矩阵,有3*6=18个参数
def U_theta(qubits, params):
circuit = create_empty_circuit()
for i in range(6):
circuit << RX(qubits[i], params[3 * i]) \
<< RZ(qubits[i], params[3 * i + 1]) \
<< RX(qubits[i], params[3 * i + 2])
return circuit
# 哈密顿量模拟第一部分,有6个参数
def H_X(qubits, params):
circuit = create_empty_circuit()
for i in range(6):
circuit << RX(qubits[i], params[i])
return circuit
# 哈密顿量模拟第二部分,有6个参数
def H_ZZ(qubits, params):
circuit = create_empty_circuit()
for i in range(5):
circuit << CNOT(qubits[i], qubits[i + 1]) \
<< RZ(qubits[i + 1], params[i]) \
<< CNOT(qubits[i], qubits[i + 1])
circuit << CNOT(qubits[5], qubits[0]) \
<< RZ(qubits[0], params[5]) \
<< CNOT(qubits[5], qubits[0])
return circuit
# 整个参数线路,共18+6+6=30个参数
def QRNN_VQC(qubits, params):
params1 = params[0: 18]
params2 = params[18: 18 + 6]
params3 = params[18 + 6: 30]
circuit = create_empty_circuit()
circuit << U_theta(qubits, params1) \
<< H_X(qubits, params2) \
<< H_ZZ(qubits, params3)
return circuit
# 批量读取数据
def get_minibatch_data(x_data, true, batch_size):
for i in range(0, x_data.shape[0] - batch_size + 1, batch_size):
idxs = slice(i, i + batch_size)
yield x_data[idxs], true[idxs] # yeild 类似于return,返回后交出CPU使用权
# 搭建完整的量子线路
def QCircuit(input, weights, qlist, clist, machine):
global Amplitude
x = input
params = weights.squeeze()
prog = QProg()
circuit = create_empty_circuit()
circuit << amplitude_encode([qlist[0], qlist[1], qlist[2]], x) # 数据输入
circuit << amplitude_encode([qlist[3], qlist[4], qlist[5]], Amplitude)
circuit << QRNN_VQC(qlist, params[0: 30])
prog << circuit
qubit0_prob = machine.prob_run_dict(prog, qlist[0], -1)
qubit1_prob = machine.prob_run_list(prog, qlist[1], -1)
qubit2_prob = machine.prob_run_list(prog, qlist[2], -1)
Amplitude_2 = machine.prob_run_list(prog, [qlist[3], qlist[4], qlist[5]], -1)
Amplitude = np.sqrt(np.array(Amplitude_2))
prob = list(qubit0_prob.values())
return prob
'''Step2 定义一个继承于Module的机器学习模型类'''
param_num = 30 # 待训练参数个数
qbit_num = 6 # 量子计算模块量子比特数
class QRNNModel(Module):
def __init__(self):
super(QRNNModel, self).__init__()
# 使用QuantumLayer类,可以把带训练参数的量子线路纳入VQNet的自动微分的训练流程中
self.pqc = QuantumLayer(QCircuit, param_num, "cpu", qbit_num)
# 定义模型前向函数
def forward(self, X_t):
global Amplitude
Amplitude = np.array([1, 0, 0, 0, 0, 0, 0, 0])
xin = X_t
# xin = normalize(X_t, axis=1)
for i in range(X_t.shape[1]):
input = tensor.unsqueeze(xin[i]) # 输入必须满足[batch_size, n]的格式
x = self.pqc(input)[0,1] # 坍缩到1的概率直接当均值,这里只用第一个比特的概率
# print(Amplitude)
return x
'''Step3 模型的训练'''
def train(data):
x_train = []
y_train = []
x_train = np.array(X_train_in)
y_train = np.array(Y_train)
x_train = x_train.reshape(-1, n)
# 3. 模型的训练
batch_size = 1
epoch = 300
print("start training...........")
for i in range(epoch):
model.train()
count = 0
loss = 0
for data, true in get_minibatch_data(x_train, y_train, batch_size):
data, true = QTensor(data), QTensor(true)
optimizer.zero_grad() # 优化器中缓存梯度清零
output = model(data) # 模型前向计算
losss = MseLoss(true, output) # 损失函数计算
# print(data, true, output)
losss.backward() # 损失反向传播
optimizer._step() # 优化器参数更新
loss += losss.item()
count += batch_size
print(f"epoch:{i}, train_loss:{loss / count}\n")
Param = np.array(model.pqc.parameters())[0].reshape((-1, 1)).to_numpy().squeeze()
return Param
'''Step3 性能测试'''
def Accuarcy(params, zhibiao, n):
# test_iterations = len(Y_test)
test_iterations = 100
print("test iterations = ", test_iterations)
# 这里两个用于记录测试集的真实值和预测值
_ = []
_ = []
a = 0
Ei_2_sum = 0 # 误差平方和初始化
for j in range(test_iterations):
zhenfu = np.array([1, 0, 0, 0, 0, 0, 0, 0 ])
X_test_n = normalize(X_test_in[j], axis=1)
X_t = np.array(X_test_n)
for i in range(n):
qvm = CPUQVM() # 建立一个局部的量子虚拟机
qvm.init_qvm() # 初始化量子虚拟机
qubits = qvm.qAlloc_many(6)
# cbits = qvm.cAlloc_many(6)
prog = QProg()
circuit = create_empty_circuit()
circuit << amplitude_encode([qubits[0], qubits[1], qubits[2]], X_t[i]) # 数据输入
circuit << amplitude_encode([qubits[3], qubits[4], qubits[5]], zhenfu) # 后三个比特的编码
circuit << QRNN_VQC(qubits, params[0: 30])
prog << circuit
qubit0_prob = qvm.prob_run_list(prog, qubits[0], -1)
qubit1_prob = qvm.prob_run_list(prog, qubits[1], -1)
qubit2_prob = qvm.prob_run_list(prog, qubits[2], -1)
# 坍缩到1的概率直接当均值
qubit0_avrage = qubit0_prob[1]
# 求后三个比特最后的状态振幅,这里还需要修改,使用的模方再开根,不含复数
zhenfu_2 = qvm.prob_run_list(prog, [qubits[3], qubits[4], qubits[5]], -1)
zhenfu = np.sqrt(np.array(zhenfu_2))
# 释放局部虚拟机
qvm.finalize()
# 数据后处理
if qubit0_avrage <= 0.5:
Y_prediction = 0
else:
Y_prediction = 1
# _.append(Y_prediction * sum + Y_tmin)
_.append(Y_prediction)
_.append(Y_test[j])
if Y_prediction == Y_test[j]:
a = a + 1
print("a=" +str(a))
accuarcy = a/test_iterations
return accuarcy, _, _
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
#去除全0行
x_train_1 = []
x_train_2 = []
for i in range(len(y_train)):
x_train_1.append(x_train[i][[not np.all(x_train[i][j] == 0) for j in range(x_train[i].shape[0])],:])
x_train_2.append(x_train_1[i][:,[not np.all(x_train_1[i][:,k] == 0) for k in range(x_train_1[i].shape[1])]])
x_test_1 = []
x_test_2 = []
for i in range(len(y_test)):
x_test_1.append(x_test[i][[not np.all(x_test[i][j] == 0) for j in range(x_test[i].shape[0])],:])
x_test_2.append(x_test_1[i][:,[not np.all(x_test_1[i][:,k] == 0) for k in range(x_test_1[i].shape[1])]])
x_train_2[x_train_2==0] = 1
x_test_2[x_test_2==0] = 1
a=8
x_train_pca = []
for i in range(len(y_train)):
x_train_pca.append(cv.resize(x_train_2[i], dsize = (a, a)))
x_test_pca = []
for i in range(len(y_test)):
x_test_pca.append(cv.resize(x_test_2[i], dsize = (a, a)))
X_train_in = []
Y_train = []
Y_train_in = []
for i in range(len(y_train)):
if y_train[i] <= 1:
X_train_in.append(x_train_pca[i])
Y_train.append(y_train[i])
Y_train_in = np.array(tf.one_hot(Y_train, 2))
X_test_in = []
Y_test = []
Y_test_in = []
for i in range(len(y_test)):
if y_test[i] <= 1:
X_test_in.append(x_test_pca[i])
Y_test.append(y_test[i])
Y_test_in = np.array(tf.one_hot(Y_test, 2))
n = 8
model = QRNNModel()
optimizer = adam.Adam(model.parameters(), lr=0.01)
MseLoss = MeanSquaredError()
param = train(X_train_in)
accuarcy, _, _ = Accuarcy(param, X_test_in, n)
print('相对湿度精度为:' + str(accuarcy))
# np.savetxt(f"./QRNN_best_params/Relative Humidity.txt", param)