-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMinist.py
329 lines (264 loc) · 10.4 KB
/
Minist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import math as m # 数学
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import time
from pyqpanda import *
import tensorflow as tf
from tensorflow.keras.utils import normalize
from sklearn.decomposition import PCA
import cv2 as cv
start = time.time()
def numerical_gradient(f, params, x, n):
h = 1e-4 # 0.0001
grad = np.zeros_like(params) # 生成和参数形状相同的数组
for idx in range(params.size):
tmp_val = params[idx]
# f(x+h)的计算
params[idx] = tmp_val + h
fxh1, ypre = f(params, x, n)
# f(x-h)的计算
params[idx] = tmp_val - h
fxh2, ypre = f(params, x, n)
grad[idx] = (fxh1 - fxh2) / (2 * h)
params[idx] = tmp_val # 还原值
return grad
def MAE(Y, t):
return np.sum(np.absolute(t - Y))
def MSE(Y, t):
return 0.5 * (np.sum(Y - t) ** 2)
def RMSE(Y, t):
return np.sqrt(np.sum(Y - t) ** 2)
def cross_entropy_error(y, t):
delta = 1e-7 ##添加一个微小值可以防止负无限大(np.log(0))的发生
return -np.sum(t * np.log(y + delta)) # + np.sum((1-t) * np.log(1-y)) #t是标签,y是网络的输出
# 数据输入U_in矩阵
def U_in(qubits, X_t):
# print(len(X_t))
for i in range(len(X_t)):
if X_t[i] > 1:
X_t[i] = 1
elif X_t[i] < -1:
X_t[i] = -1
circuit = create_empty_circuit()
theta_in = np.zeros(len(X_t))
for i in range(len(X_t)):
theta_in[i] = m.acos(X_t[i])
for i in range(3):
circuit << RY(qubits[i], theta_in[0]) \
<< RY(qubits[i], theta_in[1]) \
<< RY(qubits[i], theta_in[2]) \
<< RY(qubits[i], theta_in[3]) \
<< RY(qubits[i], theta_in[4]) \
<< RY(qubits[i], theta_in[5])
return circuit
# 参数矩阵,有3*6=18个参数
def U_theta(qubits, params):
circuit = create_empty_circuit()
for i in range(6):
circuit << RX(qubits[i], params[3 * i]) \
<< RZ(qubits[i], params[3 * i + 1]) \
<< RX(qubits[i], params[3 * i + 2])
return circuit
# 哈密顿量模拟第一部分,有6个参数
def H_X(qubits, params):
circuit = create_empty_circuit()
for i in range(6):
circuit << RX(qubits[i], params[i])
return circuit
# 哈密顿量模拟第二部分,有6个参数
def H_ZZ(qubits, params):
circuit = create_empty_circuit()
for i in range(5):
circuit << CNOT(qubits[i], qubits[i + 1]) \
<< RZ(qubits[i + 1], params[i]) \
<< CNOT(qubits[i], qubits[i + 1])
circuit << CNOT(qubits[5], qubits[0]) \
<< RZ(qubits[0], params[5]) \
<< CNOT(qubits[5], qubits[0])
return circuit
# 整个参数线路,共18+6+6=30个参数
def QRNN_VQC(qubits, params):
params1 = params[0: 18]
params2 = params[18: 18 + 6]
params3 = params[18 + 6: 30]
circuit = create_empty_circuit()
for i in range(3):
circuit << U_theta(qubits, params1) \
<< H_X(qubits, params2) \
<< H_ZZ(qubits, params3)
return circuit
# 损失函数,共30+3个参数,其中前30个为量子线路参数,最后3个为经典参数
def loss(params, X_t, n):
LOSS = 0
zhenfu = np.array([1, 0, 0, 0, 0, 0, 0, 0])
for i in range(n):
qvm = CPUQVM() # 建立一个局部的量子虚拟机
qvm.init_qvm() # 初始化量子虚拟机
qubits = qvm.qAlloc_many(6)
prog = QProg()
circuit = create_empty_circuit()
# circuit << U_in(qubits, X_t[i]) # 数据输入
circuit << amplitude_encode([qubits[0], qubits[1], qubits[2]], X_t[i])
circuit << amplitude_encode([qubits[3], qubits[4], qubits[5]], zhenfu) # 后三个比特的编码
circuit << QRNN_VQC(qubits, params[0: 30])
# circuit << QRNN_VQC(qubits, params[30*i: 30*i +30])
prog << circuit
qubit0_prob = qvm.prob_run_list(prog, qubits[0], -1)
qubit1_prob = qvm.prob_run_list(prog, qubits[1], -1)
qubit2_prob = qvm.prob_run_list(prog, qubits[2], -1)
# 坍缩到1的概率直接当均值
qubit0_avrage = qubit0_prob[1]
# 这里只用第一个比特的概率
Y_prediction = qubit0_avrage
# 求后三个比特最后的状态振幅
zhenfu_2 = qvm.prob_run_list(prog, [qubits[3], qubits[4], qubits[5]], -1)
zhenfu = np.sqrt(np.array(zhenfu_2))
# 释放局部虚拟机
qvm.finalize()
# LOSS = m.fabs(Y_prediction - X_t[n] )/ X_t[n]
LOSS = RMSE(Y_prediction, Y_train[i])
# LOSS = cross_entropy_error(Y_prediction, Y_train[i])
return LOSS, Y_prediction
def Accuarcy(params, n):
# test_iterations = len(Y_test_in)
print("lr = ", lr)
test_iterations = 200
print("test iterations = ", test_iterations)
# 这里两个用于记录测试集的真实值和预测值
Y_pre_history_test = []
Y_true_history_test = []
Ei_2_sum = 0 # 误差平方和初始化
a = 0
for j in range(test_iterations):
zhenfu = np.array([1, 0, 0, 0, 0, 0, 0, 0])
X_test_n = normalize(X_test_in[j], axis=1)
X_t = np.array(X_test_n)
for i in range(n):
qvm = CPUQVM() # 建立一个局部的量子虚拟机
qvm.init_qvm() # 初始化量子虚拟机
qubits = qvm.qAlloc_many(6)
# cbits = qvm.cAlloc_many(6)
prog = QProg()
circuit = create_empty_circuit()
# circuit << U_in(qubits, X_t[i]) # 数据输入
circuit << amplitude_encode([qubits[0], qubits[1], qubits[2]], X_t[i])
circuit << amplitude_encode([qubits[3], qubits[4], qubits[5]], zhenfu) # 后三个比特的编码
# circuit << QRNN_VQC(qubits, params[30*i: 30*i +30])
circuit << QRNN_VQC(qubits, params[0: 30])
prog << circuit
qubit0_prob = qvm.prob_run_list(prog, qubits[0], -1)
qubit1_prob = qvm.prob_run_list(prog, qubits[1], -1)
qubit2_prob = qvm.prob_run_list(prog, qubits[2], -1)
# 坍缩到1的概率直接当均值
qubit0_avrage = qubit0_prob[1]
# 这里只用第一个比特的概率
Y_out = qubit0_avrage
# 求后三个比特最后的状态振幅,这里还需要修改,使用的模方再开根,不含复数
zhenfu_2 = qvm.prob_run_list(prog, [qubits[3], qubits[4], qubits[5]], -1)
zhenfu = np.sqrt(np.array(zhenfu_2))
# 释放局部虚拟机
qvm.finalize()
# 数据后处理
if Y_out >= 0.5:
Y_prediction = 1
else:
Y_prediction = 0
Y_pre_history_test.append(Y_prediction)
Y_true_history_test.append(Y_test[j])
# print("预测结果:" + str(Y_prediction) +"," +"标签:" + str(Y_test[j]))
# print("Y_prediction: " +str(Y_prediction))
# print("Y_test[j]: " +str(Y_test[j]))
if Y_prediction == Y_test[j]:
a = a + 1
print("a=" + str(a))
accuarcy = a / test_iterations
return accuarcy, Y_pre_history_test, Y_true_history_test
if __name__ == "__main__":
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train_1 = []
x_train_2 = []
for i in range(len(y_train)):
x_train_1.append(x_train[i][[not np.all(x_train[i][j] == 0) for j in range(x_train[i].shape[0])], :])
x_train_2.append(x_train_1[i][:, [not np.all(x_train_1[i][:, k] == 0) for k in range(x_train_1[i].shape[1])]])
x_test_1 = []
x_test_2 = []
for i in range(len(y_test)):
x_test_1.append(x_test[i][[not np.all(x_test[i][j] == 0) for j in range(x_test[i].shape[0])], :])
x_test_2.append(x_test_1[i][:, [not np.all(x_test_1[i][:, k] == 0) for k in range(x_test_1[i].shape[1])]])
# 过滤所有全零行,只保留非零行
# x_train_2[x_train_2==0] = 1/2
# x_test_2[x_test_2==0] = 1/2
a = 8
x_train_pca = []
x_test_pca = []
for i in range(len(y_train)):
x_train_pca.append(cv.resize(x_train_2[i], dsize=(a, a)))
for i in range(len(y_test)):
x_test_pca.append(cv.resize(x_test_2[i], dsize=(a, a)))
X_train_in = []
Y_train = []
Y_train_in = []
for i in range(len(y_train)):
if y_train[i] <= 1:
X_train_in.append(x_train_pca[i])
Y_train.append(y_train[i])
Y_train_in = np.array(tf.one_hot(Y_train, 2))
X_test_in = []
Y_test = []
Y_test_in = []
for i in range(len(y_test)):
if y_test[i] <= 1:
X_test_in.append(x_test_pca[i])
Y_test.append(y_test[i])
Y_test_in = np.array(tf.one_hot(Y_test, 2))
# 基本参数设置和初始化
# iterations = len(Y_train_in)
iterations = 200
n = 8
params = np.random.randn(30)
# params = np.random.randn(30*n)
params = list(params) # 转换成列表用于添加元素
params = np.array(params) # 再转换为数组
lr = 0.1
print("train iterations:", iterations)
print("block_num:", n)
# 参数和损失函数存储初始化
params_history = []
loss_history = []
zhenfu_history = []
Y_pre_history = []
Y_true_history = []
gradient = []
# 梯度下降法迭代更新参数交易量
for i in range(iterations):
print(i, end='|')
X_train_n = normalize(X_train_in[i], axis=1)
X_t_in = np.array(X_train_n)
Y_true_history.append(Y_train_in[i])
# 求梯度
grad = numerical_gradient(loss, params, X_t_in, n)
gradient.append(grad)
# 求损失函数值(用于存储),此时预测值Y_pre_n均为差值
LOSS, Y_prediction = loss(params, X_t_in, n)
# 当天预测值 = 当天前一天的真实值 + 差值
Y_pre = Y_prediction
# 记录损失函数
loss_history.append(LOSS)
# print("当日交易量训练损失:\n:",loss_history)
# 记录预测值
Y_pre_history.append(Y_pre)
# 梯度下降更新参数
if i < (iterations + 1):
params = params - lr * grad
# 记录参数
params_history.append(list(params))
# print("CloseIndex " + str(i) + "loss:" + str(LOSS))
params_A = params
avg_loss = np.sum(loss_history[:iterations]) / iterations
print('CloseIndex_avg_loss: ' + str(avg_loss))
accuarcy, Y_pre_history_test, Y_true_history_test = Accuarcy(params_A, n)
print('分类准确率:' + str(accuarcy))
end = time.time()
print('running time: %s minutes.' % ((end - start) / 60))