-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfastmri_utils.py
206 lines (169 loc) · 6.22 KB
/
fastmri_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
from typing import List, Optional
import torch
from packaging import version
if version.parse(torch.__version__) >= version.parse("1.7.0"):
import torch.fft # type: ignore
def fft2c_old(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
"""
Apply centered 2 dimensional Fast Fourier Transform.
Args:
data: Complex valued input data containing at least 3 dimensions:
dimensions -3 & -2 are spatial dimensions and dimension -1 has size
2. All other dimensions are assumed to be batch dimensions.
norm: Whether to include normalization. Must be one of ``"backward"``
or ``"ortho"``. See ``torch.fft.fft`` on PyTorch 1.9.0 for details.
Returns:
The FFT of the input.
"""
if not data.shape[-1] == 2:
raise ValueError("Tensor does not have separate complex dim.")
if norm not in ("ortho", "backward"):
raise ValueError("norm must be 'ortho' or 'backward'.")
normalized = True if norm == "ortho" else False
data = ifftshift(data, dim=[-3, -2])
data = torch.fft(data, 2, normalized=normalized)
data = fftshift(data, dim=[-3, -2])
return data
def ifft2c_old(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
"""
Apply centered 2-dimensional Inverse Fast Fourier Transform.
Args:
data: Complex valued input data containing at least 3 dimensions:
dimensions -3 & -2 are spatial dimensions and dimension -1 has size
2. All other dimensions are assumed to be batch dimensions.
norm: Whether to include normalization. Must be one of ``"backward"``
or ``"ortho"``. See ``torch.fft.ifft`` on PyTorch 1.9.0 for
details.
Returns:
The IFFT of the input.
"""
if not data.shape[-1] == 2:
raise ValueError("Tensor does not have separate complex dim.")
if norm not in ("ortho", "backward"):
raise ValueError("norm must be 'ortho' or 'backward'.")
normalized = True if norm == "ortho" else False
data = ifftshift(data, dim=[-3, -2])
data = torch.ifft(data, 2, normalized=normalized)
data = fftshift(data, dim=[-3, -2])
return data
def fft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
"""
Apply centered 2 dimensional Fast Fourier Transform.
Args:
data: Complex valued input data containing at least 3 dimensions:
dimensions -3 & -2 are spatial dimensions and dimension -1 has size
2. All other dimensions are assumed to be batch dimensions.
norm: Normalization mode. See ``torch.fft.fft``.
Returns:
The FFT of the input.
"""
if not data.shape[-1] == 2:
raise ValueError("Tensor does not have separate complex dim.")
data = ifftshift(data, dim=[-3, -2])
data = torch.view_as_real(
torch.fft.fftn( # type: ignore
torch.view_as_complex(data), dim=(-2, -1), norm=norm
)
)
data = fftshift(data, dim=[-3, -2])
return data
def ifft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
"""
Apply centered 2-dimensional Inverse Fast Fourier Transform.
Args:
data: Complex valued input data containing at least 3 dimensions:
dimensions -3 & -2 are spatial dimensions and dimension -1 has size
2. All other dimensions are assumed to be batch dimensions.
norm: Normalization mode. See ``torch.fft.ifft``.
Returns:
The IFFT of the input.
"""
if not data.shape[-1] == 2:
raise ValueError("Tensor does not have separate complex dim.")
data = ifftshift(data, dim=[-3, -2])
data = torch.view_as_real(
torch.fft.ifftn( # type: ignore
torch.view_as_complex(data), dim=(-2, -1), norm=norm
)
)
data = fftshift(data, dim=[-3, -2])
return data
# Helper functions
def roll_one_dim(x: torch.Tensor, shift: int, dim: int) -> torch.Tensor:
"""
Similar to roll but for only one dim.
Args:
x: A PyTorch tensor.
shift: Amount to roll.
dim: Which dimension to roll.
Returns:
Rolled version of x.
"""
shift = shift % x.size(dim)
if shift == 0:
return x
left = x.narrow(dim, 0, x.size(dim) - shift)
right = x.narrow(dim, x.size(dim) - shift, shift)
return torch.cat((right, left), dim=dim)
def roll(
x: torch.Tensor,
shift: List[int],
dim: List[int],
) -> torch.Tensor:
"""
Similar to np.roll but applies to PyTorch Tensors.
Args:
x: A PyTorch tensor.
shift: Amount to roll.
dim: Which dimension to roll.
Returns:
Rolled version of x.
"""
if len(shift) != len(dim):
raise ValueError("len(shift) must match len(dim)")
for (s, d) in zip(shift, dim):
x = roll_one_dim(x, s, d)
return x
def fftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
"""
Similar to np.fft.fftshift but applies to PyTorch Tensors
Args:
x: A PyTorch tensor.
dim: Which dimension to fftshift.
Returns:
fftshifted version of x.
"""
if dim is None:
# this weird code is necessary for toch.jit.script typing
dim = [0] * (x.dim())
for i in range(1, x.dim()):
dim[i] = i
# also necessary for torch.jit.script
shift = [0] * len(dim)
for i, dim_num in enumerate(dim):
shift[i] = x.shape[dim_num] // 2
return roll(x, shift, dim)
def ifftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
"""
Similar to np.fft.ifftshift but applies to PyTorch Tensors
Args:
x: A PyTorch tensor.
dim: Which dimension to ifftshift.
Returns:
ifftshifted version of x.
"""
if dim is None:
# this weird code is necessary for toch.jit.script typing
dim = [0] * (x.dim())
for i in range(1, x.dim()):
dim[i] = i
# also necessary for torch.jit.script
shift = [0] * len(dim)
for i, dim_num in enumerate(dim):
shift[i] = (x.shape[dim_num] + 1) // 2
return roll(x, shift, dim)