forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
40 lines (34 loc) · 1.11 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from torch import nn
def get_loss(name):
if name == "cosface":
return CosFace()
elif name == "arcface":
return ArcFace()
else:
raise ValueError()
class CosFace(nn.Module):
def __init__(self, s=64.0, m=0.40):
super(CosFace, self).__init__()
self.s = s
self.m = m
def forward(self, cosine, label):
index = torch.where(label != -1)[0]
m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device)
m_hot.scatter_(1, label[index, None], self.m)
cosine[index] -= m_hot
ret = cosine * self.s
return ret
class ArcFace(nn.Module):
def __init__(self, s=64.0, m=0.5):
super(ArcFace, self).__init__()
self.s = s
self.m = m
def forward(self, cosine: torch.Tensor, label):
index = torch.where(label != -1)[0]
m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device)
m_hot.scatter_(1, label[index, None], self.m)
cosine.acos_()
cosine[index] += m_hot
cosine.cos_().mul_(self.s)
return cosine