forked from amazon-science/uniform-episodic-sampling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
136 lines (112 loc) · 4.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from tqdm import tqdm
from algorithms import *
from datasets import *
from models import *
from samplers import *
from utils import *
TRAIN_ITERATIONS = 20000
CHECKPOINT_ITERATIONS = 1000
TEST_NUM_TASKS = 1000
args = argparse.ArgumentParser(
description='few-shot-benchmark',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args.add_argument('--dataset', type=str, required=True)
args.add_argument('--model', type=str, required=True)
args.add_argument('--algorithm', type=str, required=True)
args.add_argument('--sampler', type=str, required=True)
args.add_argument('--ways', type=int, default=5)
args.add_argument('--support_shots', type=int, required=True)
args.add_argument('--query_shots', type=int, default=15)
args.add_argument('--params_path', type=str, default=None)
args = vars(args.parse_args())
if args['dataset'] == 'mini-imagenet':
TRAIN_BATCH_SIZE = 16
elif args['dataset'] == 'tiered-imagenet':
TRAIN_BATCH_SIZE = 32
def main():
dataset = args['dataset']
model = args['model']
algorithm = args['algorithm']
sampler = args['sampler']
ways = args['ways']
support_shots = args['support_shots']
query_shots = args['query_shots']
setup()
train_tasks, val_tasks, test_tasks = DATASETS[dataset](
ways, support_shots + query_shots, ways, support_shots + query_shots,
'cpu')
model = MODELS[model](ways)
algo_model, adapt = ALGORITHMS[algorithm]
model = algo_model(model)
model.to('cuda')
Sampler = SAMPLERS[sampler](TRAIN_BATCH_SIZE, TRAIN_ITERATIONS,
train_tasks, args)
optimizer = torch.optim.Adam(model.parameters())
best_meta_val_acc = 0.
for iteration in tqdm(range(1, TRAIN_ITERATIONS + 1)):
meta_train_accs = []
sum_weights = 0.
sum_weights_square = 0.
optimizer.zero_grad()
for _ in range(TRAIN_BATCH_SIZE):
task = train_tasks.sample()
loss, acc, weight = evaluate_task(
task, ways, support_shots, query_shots, model, adapt, Sampler,
True)
meta_train_accs.append(acc.item())
sum_weights += weight
sum_weights_square += (weight ** 2.)
(weight * loss).backward()
if sum_weights == 0.:
inv_effective_batch_size = 1.
else:
inv_effective_batch_size = sum_weights_square / (sum_weights ** 2.)
for p in model.parameters():
if hasattr(p, 'grad') and p.grad is not None:
p.grad.data.mul_(inv_effective_batch_size)
optimizer.step()
if iteration % CHECKPOINT_ITERATIONS == 0:
meta_val_accs = []
meta_test_accs = []
for idx in range(TEST_NUM_TASKS):
task = val_tasks[idx]
_, acc = evaluate_task(task, ways, support_shots,
query_shots, model, adapt, None, False)
meta_val_accs.append(acc.item())
task = test_tasks[idx]
_, acc = evaluate_task(task, ways, support_shots,
query_shots, model, adapt, None, False)
meta_test_accs.append(acc.item())
meta_val_acc = np.mean(meta_val_accs)
if meta_val_acc > best_meta_val_acc:
best_meta_val_acc = meta_val_acc
final_meta_test_acc = np.mean(meta_test_accs)
final_meta_test_ci = 1.96 * np.std(meta_test_accs, ddof=1) \
/ (len(meta_test_accs) ** .5)
tqdm.write(
'[%d]\t meta_train_accuracy:\t %.4f' %
(iteration, np.mean(meta_train_accs)))
tqdm.write(
'[%d]\t meta_val_accuracy:\t %.4f' %
(iteration, np.mean(meta_val_accs)))
tqdm.write(
'[%d]\t meta_test_accuracy:\t %.4f' %
(iteration, np.mean(meta_test_accs)))
tqdm.write('[%d]\t final_meta_test_accuracy:\t %.4f +/- %.4f' %
(iteration, final_meta_test_acc, final_meta_test_ci))
if __name__ == '__main__':
main()