forked from amazon-science/uniform-episodic-sampling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
samplers.py
233 lines (146 loc) · 5.72 KB
/
samplers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from scipy.stats import truncnorm, uniform
from tqdm import tqdm
from algorithms import *
from models import *
from utils import *
MIN = - 2.58
MAX = 2.58
NUM_ITERATIONS = 100
MOMENTUM = .9
OFFLINE_NUM_TASKS = 1000
EPS = 1e-3
class RegularSampler:
def __init__(self, batch_size, num_iterations, tasks, args):
self.total_num_updates = batch_size * num_iterations
self.num_updates = 0
def weight(self, task, value):
return 1.
def update(self, value):
self.num_updates += 1
class OfflineSampler(RegularSampler):
def _compute_value(self, task):
value, _ = evaluate_task(task, self.ways, self.support_shots,
self.query_shots, self.model, self.adapt,
None, False)
return value.item()
def __init__(self, batch_size, num_iterations, tasks, args):
super(OfflineSampler, self).__init__(batch_size, num_iterations, tasks,
args)
model = MODELS[args['model']](args['ways'])
algo_model, adapt = ALGORITHMS[args['algorithm']]
model = algo_model(model)
model.load_state_dict(torch.load(args['params_path']))
model.to('cuda')
model.eval()
self.ways = args['ways']
self.support_shots = args['support_shots']
self.query_shots = args['query_shots']
self.model = model
self.adapt = adapt
values = []
for idx in tqdm(range(OFFLINE_NUM_TASKS)):
task = tasks[idx]
value = self._compute_value(task)
values.append(value)
self.mean = np.mean(values)
self.var = np.var(values, ddof=1)
def weight(self, task, value):
value = self._compute_value(task)
return self._weight(value)
class OnlineSampler(RegularSampler):
def __init__(self, batch_size, num_iterations, tasks, args):
super(OnlineSampler, self).__init__(batch_size, num_iterations, tasks,
args)
self.mean = None
self.var = None
self.batch_size = batch_size
def _update(self, value):
self.num_updates += 1
if self.mean is None and self.var is None:
mean = value
self.mean = mean
elif self.var is None:
mean = value
var = (value - self.mean) ** 2.
self.mean = (MOMENTUM * self.mean) + ((1. - MOMENTUM) * mean)
self.var = var
else:
mean = value
var = (value - self.mean) ** 2.
self.mean = (MOMENTUM * self.mean) + ((1. - MOMENTUM) * mean)
self.var = (MOMENTUM * self.var) + ((1. - MOMENTUM) * var)
def weight(self, task, value):
if self.num_updates < self.batch_size * NUM_ITERATIONS:
return 1.
return self._weight(value)
def update(self, value):
return self._update(value)
class Importance:
def _convert_value(self, value):
return (value - self.mean) / (self.var ** .5)
def _stable_weight(self, target, value):
observed = truncnorm.pdf(value, MIN, MAX)
if target < EPS and observed < EPS:
return 1.
if observed < EPS:
return target / (observed + EPS)
return target / observed
class EasyImportance(Importance):
def _weight(self, value):
value = self._convert_value(value)
target = uniform.pdf(value, MIN, - MIN)
return self._stable_weight(target, value)
class HardImportance(Importance):
def _weight(self, value):
value = self._convert_value(value)
target = uniform.pdf(value, 0., MAX)
return self._stable_weight(target, value)
class CurriculumImportance(Importance):
def _weight(self, value):
value = self._convert_value(value)
lam = self.num_updates / self.total_num_updates
mean = ((1. - lam) * MIN) + (lam * MAX)
target = truncnorm.pdf(value, MIN - mean, MAX - mean, mean, 1.)
return self._stable_weight(target, value)
class UniformImportance(Importance):
def _weight(self, value):
value = self._convert_value(value)
target = uniform.pdf(value, MIN, MAX - MIN)
return self._stable_weight(target, value)
class OfflineEasyImportanceSampler(OfflineSampler, EasyImportance):
def dummy(self):
return
class OfflineHardImportanceSampler(OfflineSampler, HardImportance):
def dummy(self):
return
class OfflineCurriculumImportanceSampler(OfflineSampler, CurriculumImportance):
def dummy(self):
return
class OfflineUniformImportanceSampler(OfflineSampler, UniformImportance):
def dummy(self):
return
class OnlineUniformImportanceSampler(OnlineSampler, UniformImportance):
def dummy(self):
return
SAMPLERS = {
'regular': RegularSampler,
'offline_easy': OfflineEasyImportanceSampler,
'offline_hard': OfflineHardImportanceSampler,
'offline_curriculum': OfflineCurriculumImportanceSampler,
'offline_uniform': OfflineUniformImportanceSampler,
'online_uniform': OnlineUniformImportanceSampler
}