Software Decarbonization & Programming Languages Role On Social Cost of Carbon

Chris Xie
Chris.Xie@futurewei.com
January 2023

GSF SCI Gaps: Benchmarks and SCI Scores

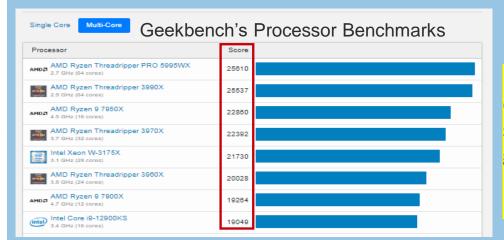
Methodology Summary

The Software Carbon Intensity (SCI) is a rate, carbon emissions per one unit of $\, R \,$. The equation used to calculate the SCI value of a software system is:

$$SCI = ((E * I) + M) per R$$

Where:

- E = Energy consumed by a software system
- I = Location-based marginal carbon emissions
- M = Embodied emissions of a software system
- R = Functional unit (e.g. carbon per additional user, API-call, ML job, etc)


CALCULATED SCI FOR ALL FOUNDATION MODELS

	GPT-J 6B	GPT-Neo 2.7B	GPT-Neo1.3B	GPT-Neo 125M	GPT-2
Total kWh - CPU	1285.26	1361.31	1424.35	1321.75	722.72
Total Runs - CPU	680,143	1,379,125	2,650,084	12,129,230	3,440,290
Total Emissions - CPU	5552.87	5589.25	5619.41	5570.32	5283.75
SCI - CPU	8.16	4.05	2.12	0.46	3.45
Total kWh - GPU	~	-	2086.13	1697.69	1937.06
Total Runs - GPU	m m	-	45,051,428	94,608,000	39,420,000
Total Emissions - GPU	-	-	5936.01	5750.17	5864.69
SCI - GPU	~		0.13	0.06	0.15

Gaps

- Define a benchmark, workload, demo, referencing MLPerf/Geekbench benchmarks
- Use cases to demonstrate business value of SCI
- Value propositions of SCI: correlate SCI scores to dollar amount of carbon emissions of software systems

"...the introduction of a basic 'working example' inline in the spec itself, would also greatly help with readability and understanding of SCI..."

SCI Opportunities: SCI-based Social Cost of Carbon (SCC) Study on Programming Languages & Software Systems

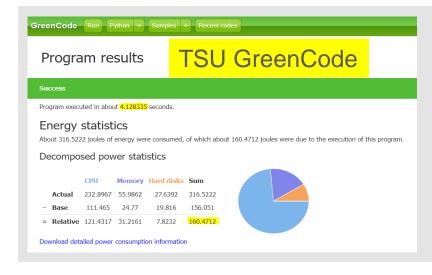
Social Cost of Carbon (SCC) is an estimate, in monetary value, the economic damages that would result from emitting one additional ton of greenhouse gases into the atmosphere, in a given year. A multi-year study finds that per ton CO2 emitted into the atmosphere costs society \$185.

Problem Statement

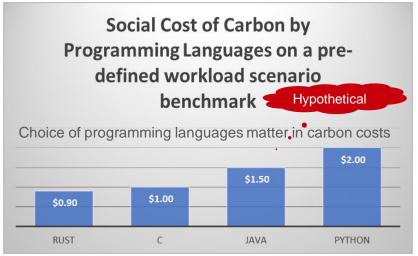
•SCI is a great measurement of carbon emissions of software systems, but lacks business meaning of what SCI score means in dollar terms. The proposed project will provide an example of correlating SCI scores with SCC dollars (Social Cost of Carbon), starting with programming languages as examples.

Value Propositions

- 1.Programming language carbon efficiency research using SCI&SCC, focusing on rust, java, python, etc
- 2.Make SCI whole by creating an application and extension of SCI
- 3. The project not only makes SCI score meaningful, but also makes it carbon "business savvy" in dollar terms.
- 4.Bridge research & business, developers & executive decision makers.


Funding & Operations

- Sponsored research and/or collaborations
- · Sponsor shares directions, scope, roadmap
- Directed funding via GSF or other avenues
- Working group chaired by sponsor/collaborator
- Sponsor and collaborators select researchers


Deliverables

- Research paper submitted to ACM or other influential orgs
- Sponsor and co-authors
- · All code open source on github
- Preferably CI/CD to allow communities to upload new workload use cases, referencing programming lanugage benchmark site, and its live CI/CD daily built
- Timeline: TBD

	Energy		Time		Mb
(c) C	1.00	(c) C	1.00	(c) Pascal	1.00
(c) Rust	1.03	(c) Rust	1.04	(c) Go	1.05
(c) C++	1.34	(c) C++	1.56	(c) C	1.17
(c) Ada	1.70	(c) Ada	1.85	(c) Fortran	1.24
(v) Java	1.98	(v) Java	1.89	(c) C++	1.34
(c) Pascal	2.14	(c) Chapel	2.14	(c) Ada	1.47
(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.54
(v) Lisp	2.27	(c) Pascal	3.02	(v) Lisp	1.92
(c) Ocaml	2.40	(c) Ocaml	3.09	(c) Haskell	2.45
(c) Fortran		(v) C#	3.14		2.57
(c) Swift	1 671	Lisp	3.40	(r) Swift	2.71
(c) Haskell	1/3/	Sust	aın.	anuitv	2.80
(v) C#	V 3.74		Qj, i	u Quin t y	
(c) Go	3.23	(c) Fortran	4.20	(v) C#	2.85
(i) Dart	3.83	with F	D 439	(i) Hack	3.34
(v) F#	4.13	V Vi) Java Script	162	(v) Racket	3.52
(i) JavaScript	4.45	(i) Dart	6.67	(i) Ruby	3.97
(v) Racket	7.91	(v) Racket	11.27	(c) Chapel	4.00
(i) TypeScript	21.50	(i) Hack	26.99	(v) F#	4.25
(i) Hack	24.02	(i) PHP	27.64	(i) JavaScript	4.59
(i) PHP	29.30	(v) Erlang	36.71	(i) TypeScript	4.69
(v) Erlang	42.23	(i) Jruby	43.44	(v) Java	6.01
(i) Lua	45.98	(i) TypeScript	46.20	(i) Perl	6.62
(i) Jruby	46.54	(i) Ruby	59.34	(i) Lua	6.72
(i) Ruby	69.91	(i) Perl	65.79	(v) Erlang	7.20
(i) Python	75.88	(i) Python	71.90	(i) Dart	8.64
(i) Perl	79.58	(i) Lua	82.91	(i) Jruby	19.84

Thank You!