This repository has been archived by the owner on Mar 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.py
195 lines (164 loc) · 5.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
'''
本文件负责VTO的flask web服务端
提供web服务、响应客户端预测请求
This file implements the web server on flask.
It can provide web service, response all predict requests.
'''
import os
from flask import Flask, render_template, request, url_for, send_from_directory
from PIL import Image
import numpy as np
import time
import platform
from Model import Model
import random
import cv2
from io import StringIO, BytesIO
import base64
from datetime import datetime
import json
# Use base64 to send & receive images between clients and the server
def readb64(base64_string):
sbuf = BytesIO()
sbuf.write(base64.b64decode(base64_string))
res = Image.open(sbuf)
return np.array(res)
def writeb64(img):
img_str = cv2.imencode('.bmp', img)[1]
imagebase64 = base64.b64encode(img_str)
imagebase64 = bytes.decode(imagebase64)
return imagebase64
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# init for all global variables
model = Model("checkpoints/jpp.pb",
"checkpoints/gmm.pth",
"checkpoints/tom.pth",
use_cuda=True)
app = Flask(__name__)
# UPLOAD_FOLDER = 'request_upload'
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
# cloth list for web server
cloth_list_raw = os.listdir(os.path.join(BASE_DIR, "static", "img"))
cloth_list = []
counter = 0
for cloth in cloth_list_raw:
if 'jpg' in cloth:
cloth_list.append([os.path.join("static", "img", cloth), counter])
counter += 1
# Use "/web" url to get web page
@app.route('/web')
def hello_world():
return render_template('login.html', img_list=cloth_list)
@app.route('/upload', methods=['GET', 'POST'])
def upload_image():
print(request.form)
print(request.files)
if (not len(request.files) == 2 or (len(request.form) == 1 and len(request.files) == 1)):
return render_template('login.html', info="selection error", img_list=cloth_list)
else:
index = 0 # init
cloth_image = None
if len(request.form) == 1:
index = int(request.form['optionsRadios'][6:])
person_image = request.files['person_image']
if len(request.files) == 2:
cloth_image = request.files['cloth_image']
start_time = time.time()
o_name, h_name = run_model_web(
person_image, cloth_list[index][0].split("\\")[-1], cloth_image)
end_time = time.time()
if o_name is None: # bad cloth image
return 'I told you only clothes image with shape 256*192*3'
else:
return render_template('login.html', img_list=cloth_list, result1=h_name, result2=o_name, info="time: %.3f" % (end_time-start_time))
def run_model_web(f, cloth_name, cloth_f=None):
'''
为web服务进行预测。cloth_name和cloth_f中必有一个有内容,优先选择cloth_f,即用户上传的衣服图片
prediction service. cloth_name and cloth_f cannot be both None. cloth_f is prior, which is from user upload.
'''
if cloth_f is None:
print(f, cloth_name)
c_img = np.array(Image.open(cloth_name))
else:
print(f, cloth_f)
try:
c_img = np.array(Image.open(cloth_f))
except:
c_img = np.array(Image.open(cloth_name))
# 固化到本地的缓存文件夹,访问的时候作为静态资源被调用
# local resource temp file would be used as static resource.
temp_o_name = os.path.join("static", "result", "%d_%s" % (
int(time.time()), cloth_name.split("/")[-1]))
temp_h_name = os.path.join("static", "human", "%d_%s" % (
int(time.time()), cloth_name.split("/")[-1]))
if c_img.shape[0] != 256 or c_img.shape[1] != 192 or c_img.shape[2] != 3:
return None, None
img = Image.open(f)
human_img = np.array(img)
out, v = model.predict(human_img, c_img, need_bright=False, keep_back=True)
print("v:"+str(v))
out = np.array(out, dtype='uint8')
img.save(temp_h_name)
Image.fromarray(out).save(temp_o_name, quality=95) # 注意这个95
return temp_o_name, temp_h_name
def getimg():
data_str = request.data
data_str = bytes.decode(data_str)
data_str = data_str.replace('\n', '')
data_json = json.loads(data_str)
base64img_p = data_json['image_person']
img_person = readb64(base64img_p)
img_person = cv2.rotate(img_person, 2)
img_person = cv2.flip(img_person, 1)
base64img_c = data_json['image_cloth']
img_cloth = readb64(base64img_c)
return [img_person, img_cloth]
'''
json format example:
client:
{
'image_person':'...',
'image_cloth':'...'
}
server:
{
'status':'ok',
'output_image':'...'
}
'''
@app.route('/cloth', methods=['GET', 'POST'])
def Hello_cloth():
'''
响应客户端请求
reponse requests from clients
'''
output_str = ""
output_json = {}
status = 'ok'
if request.method == 'POST':
# temp file would be writed to root dir
input_person, input_cloth = getimg()
cv2.imwrite('in.jpg', input_person)
input_person = input_person[60:580, 45:435]
cv2.imwrite('in_2.jpg', input_person)
output_img, v = model.predict(input_person, input_cloth, need_bright=True, keep_back=True, need_dilate=True)
output_img = cv2.cvtColor(output_img, cv2.COLOR_RGB2BGR)
cv2.imwrite('out.jpg', output_img)
print("v:"+str(v))
output_base64 = writeb64(output_img)
if v < 0.1: # confidence is too weak to show
status = 'failure'
else:
status = 'ok'
output_json["status"] = status
output_json["output_image"] = output_base64
output_str = json.dumps(output_json)
return output_str
return "please use http client to request!"
if __name__ == '__main__':
app.jinja_env.auto_reload = True
app.config['TEMPLATES_AUTO_RELOAD'] = True
# run server locally
app.run()
# or as a servers
# app.run(host='0.0.0.0', port=5000)