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Abstract: This paper presents a 2D Constraint-Based Geometric Construction System
where positioning and manipulating geometry is very precise. An unusually
simple interface makes this system particularly interactive and easy to use.
In our approach, the geometry types supported are: points, lines, circles,
ellipses, circular arcs and b-spline curves. All the fundamental topologic
constraints, i.e. tangent, parallel, perpendicular, coincident and concentric, are
provided. Metric constraints, i.e. dividing the shapes into equal parts or fixing
the geometric parameters, are also provided. These constraints are
automatically applied by the application in response to the implied intentions
of the end-user. Dynamic modifications of partially dimensioned models are
supported, whereby the design is modified while enforcing the constraints. A
graph-constructive approach is used to solve the model. As we are dealing
with partial modifications, this resolution technique is quite sufficient, and
makes our system stable and flexible. Our approach focuses highly on
interactivity. Positioning a shape constrained to another is made directly
through the graphic interface. Constraint relaxation is also done by direct
manipulations. Modifications are made by dragging the geometry, or by typing
into a numerical panel displaying the free shape parameters. Again, existing
constraints are maintained as those numbers are applied. Well-constrained and
under-constrained problems are discussed. This approach was developed in
Java, JDK 3.0.1 of SGI’s Java software.

1. INTRODUCTION

Geometry is a fundamental tool in the hand of any architect. Associative
geometry encourages the plastic interaction with design form, provides geometric
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accuracy and allows for the exploration of variation in architectural design [Ais92].
Present day architectural CAD systems are not good at handling geometric
constraints. How many would allow you to construct the ellipses tangent to two
circles and one line, interactively choose one, then divide the elliptical perimeter
into equal parts? Having done this, how many allow you to drag one of the circles,
and see the ellipse and its subdivisions change, while maintaining all the
constraints?

This problem has been considered by several communities using different
approaches often in mechanical engineering and manufacturing [Ald88]
[Kon90][Kra92] than architecture. Two major issues have arisen from previous
research: the constraint structure and the method of resolution.

From consideration of architectural applications, our purposes and goals are as
follows:

– We enlarge the geometric object structure to ellipses and splines with constraint
model enrichment.

– We treat both well and under-constrained problems. These two classes of
problem are driven by the user interface.

– We present a new user interface where constraining, modifying and relaxing
constraints is done interactively and precisely.

We present related work in section 2. The representation of geometric constraints
and the user interface are presented in sections 3 and 4. The constraint solver is
described in section 5. In section 6 some examples are presented. Before concluding
in section 8, the implementation is presented.

2. RELATED WORK

In previous work the geometric elements are generally restricted to four types,
namely point, line circle and circular arc [Bou95][FH93][Fud93][GC98][LG82]
[Ala93]. Systems which handle ellipses and splines are rare.

The repertoire of constraints differs from system to system. Although there is a
common kernel of constraints that consists of distances and angles, the parallel,
perpendicular and on constraints are usually treated separately. We could have a
hierarchy of constraints (like the one presented in [BM89]), where the explicit
constraints override the implicit constraints. Usually the geometric constraints are
classified in two categories, the topologic or structural constraints (tangency,
perpendicular, parallel, on and concentric) and the metric constraints [Ald88] (which
fix coordinates, distances, lengths and angles).

Four main approaches have been developed to solve geometric constraints: the
numerical approach, the symbolic approach, the constructive approach and the
propagation approach.
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In the numerical approach the constraints are translated into a system of equations
and solved using iterative methods such as Newton iteration [SB93][LG82]. The
exponential number of solutions and the large number of parameters make this
method inappropriate when the initial sketch is just topologically defined.
Sketchpad, described in [Sut63] was the first system to use the method of relaxation
as an alternative. Others system such as ThingLab [Bor81] kept the relaxation as an
alternative to other methods. The Newton-Raphson method has proved to be faster
than relaxation [HN94].

The symbolic approach is quite similar to the numerical approach. The
geometric constraints are also transformed into algebraic equations. However
instead of using numeric methods to solve the algebraic equation, the system is
solved with symbolic algebraic methods, such as Grobner’s bases [Buc88], or the
Wu-Ritt method [GC98]. Both methods can solve general non-linear systems of
algebraic equations, but may require exponential running times.

The constructive approach is based on the fact that most configurations in an
engineering drawing can be solved by ruler, compass and protractor. In these
methods, the constraints are satisfied constructively. The first constructive approach
was based on rules. It used rewrite rules to discover and execute the construction
steps [Ald88][Bru86][Sun88]. It was shown that this method is correct and solves all
problems that can be constructed using ruler and compass. The other constructive
approach is based on graphs, and has two phases. First, a graph representing the
constraints is analysed and a sequence of construction steps is derived. Second, the
construction steps are carried out to derive the solution. This approach is fast and
more methodical than the rule-constructive approach. However, as the repertoire of
possible constraints increases so the graph-analysis algorithm has to be modified.
Requicha [Rec77] uses dimensioned trees that allow only horizontal and vertical
distance. Todd [Tod89] generalises the dimension trees and gives a characterisation
of the expressive power of the solver. Kramer [Kra92] describes a 3D constraint
solver that deals with constraints from kinematics. Owen [Owe91] presents an
extension of this principle to include circularly dimensioned sketches, and DCM is a
commercial constraint solver [DCM93] using this method.

The propagation approach based on the constraint programming technique does
not guarantee to derive a solution or to have a reasonable worst case running time
[Doh95].

3. REPRESENTATION OF GEOMETRIC
CONSTRAINTS

We have defined our constraint model and the 2D geometric elements according
to the most common constraints used in architectural drawing. In [Bou72] a parallel
was made between the architectural design process and the geometry classification
proposed by the mathematician Felix Klein. Five levels of geometry are defined,
among them topologic and Euclidian geometry. Topologic geometry defines
continuity and neighbourhood in a building; it corresponds to the sketch step.
Euclidian geometry defines distances and angles, and corresponds to the last step of
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design. From these two levels we can deduce the two categories of constraints which
are known as the topologic and metric constraints.

3.1 Geometric entities

The description of 2D geometry in this paper is based on six types of geometric
entities, namely point, line, circle, circular arc, ellipse and b-spline curve. Each
geometric entity is characterised by a set of attributes which can be described in
three categories:

– Geometric attributes: a circle defined by its radius and its centre. An ellipse is
defined by its two radii, its centre and its orientation which generate the
coefficients of  the corresponding conic equation. A spline is defined by its
knots.

– Topologic attributes: list of points which define the type of the constraints and
the other geometric entities with which the current geometry is constrained.

– Degrees of freedom: boolean variables which correspond to the geometric
parameters. In the case of an under-constrained problem these variables allow us
to fix some geometric parameter. A priori some parameters are fixed (i.e.
degrees of freedom corresponding to line’s slope are fixed).

Points can be generated in different ways; explicitly by the user from the menu
bar, by intersection points between different geometry, or implicitly by applying a
constraint between two elements. In all the cases the point has a label referring to the
kind of the constraint, i.e. if the point is a tangent point the label tangent is activated.
This label is represented by a boolean variable. The points and their label play a
central role in the constraint solving method.

3.2 Geometric constraints

We have considered the two constraint categories: topologic constraints and
metric constraints (some examples are shown in Figure 1).

Topologic constraints comprise:

– Tangent constraint between lines, circles, arcs and ellipses, in all combinations.

– Perpendicular constraint between line and line, line and circle, line and arc and
line and ellipse.

– On constraint: we can constrain a point to be on any other shape, by the way the
shape can be constrained to pass over a set of points (i.e. circle by one, two or
three points…). These points can be intersection points.

– Parallel constraint between lines.

– Concentric constraint between circles and arcs.
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Metric constraints: are needed more in case of the under-constrained problem. The
user can fix according to his need some parameter such as the radius of a circle, or
the slope of a line. An example is shown in section 5.2. Among the metric
constraints are dividing shapes into equal parts, which is very useful in architectural
drawing.

Figure 1. Some geometric constraints supported by our system

The mathematics of a constraint depends on its type. Some constraints are
reduced to a quadratic equation. Other constraints such as tangents between ellipses
are more complex and need iterative methods to be solved.

4. USER INTERFACE AND INTERACTIVITY

Architectural drawing is a process of adding and modifying. Drawings are built
up gradually by adding to what has already been drawn [And92]. Van Sommers
refers to this as accretion [VSo84]. This build-up tends to take place by locating new
elements in some relation to what is already there – anchoring. Modifying is done in
relation to what is already drawn. Two kinds of modifications can be made:
topological and geometrical. The user interface of our approach is based on these
two principles of adding and modifying. As an example we are going to construct
and modify a geometric model, and demonstrate how easy it is to use this system.

All the constraints defined are done so explicitly by the user. Constraints are
located using the right mouse button. Drawing without constraint is done using the
left mouse button. In the first step of our example (Figure 2a), we draw an irregular
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polygon and an ellipse. After that we position five points constrained to be on the
ellipse (Figure 2b). In order to do this we simply have to select the button “point”
on the left menu bar and, with the right mouse button, click five times on the ellipse.
The system recognises the approximate position on the ellipse. The on constraint is
then applied and solved exactly. These actions release a flow of information. The
points take the label on. The topologic parameter of the ellipse includes the fives
points, and the fives points include the ellipse in their topologic parameters. The
points may not be on more than two shapes, which avoids conflicts in solving the
constraint.

   

Figure 2(a,b). Drawing an irregular polygon and five points constrained to be on an ellipse

As it is shown in Figure 3, positioning the ellipse tangent to the line is done
directly by dragging the point on the line. When an approximate tangency is
recognised by the dragging routine, a tangent constraint is applied, and solved
exactly. Dragging a second point to touch a second line, a new tangent constraint is
added, while maintaining the first. As soon as the tangent constraint is applied the
point becomes a tangent point, in this case its label which was on becomes tangent.
The point is added to the line’s topologic parameter, and a line into the point’s.

  

Figure 3(a,b). Drag a point on the ellipse to the line; a tangent constraint is applied
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We continue until the ellipse becomes tangent to the fifth line (Figure 4a). In
Figure 4b we show eight points constrained on the ellipse and dividing the elliptical
perimeter into equal parts. This constraint is applied after selecting the ellipse and
validating the number of the points on the appropriate numerical panel.

  

Figure 4(a,b). Continue until ellipse is tangent to fives lines (On the left), constraint 8 points
to be on the ellipse dividing the elliptical perimeter into equal parts

For the next step we select three construction lines defined by three points on the
ellipse and draw a circle (Figure 5).

  

Figure 5(a,b). Three construction lines defining a triangle between three points on the ellipse
are selected
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We drag the circle from any point on the circle to the construction lines. When
the approximate tangent is recognised by the dragging routine, the tangent constraint
is solved exactly. We drag a second point to the second construction line. A new
tangent constraint is added, while maintaining the first. We continue until the circle
becomes tangent to the three construction lines (Figure 6 and Figure 7). The three
tangent points take the label tangent and their topologic parameters are updated. In
the case of the circle, the points are generated implicitly by the system as soon as the
tangent constraint is recognised.

  

Figure 6(a,b). Drag a point on the circle to the construction line; a tangent constraint is
applied

  

Figure 7(a,b). Continue until the circle becomes tangent to the three construction lines

Modifying the geometric model can be done in two ways; by the numerical
panel or by direct manipulation. In the Figure 8 we move the line by fixing its slope
parameter (angles between the lines). The geometric model change as the constraints
are maintained.
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Figure 8(a,b). Move the lines without modifying the slopes, the geometric model changes as
all the constraints are maintained

Constraint relaxation is also done by direct manipulation. You only have to drag
a tangent point outside for the constraint to be relaxed. If the point is dragged with
the left button of the mouse, the constraint is completely eliminated. When the
geometric model is over-constrained during modification, the system gives you a
message asking you to eliminate some constraints. The system allows you a free
choice of the type of constraint to eliminate.

5. CONSTRAINT SOLVER

We have chosen in our approach the graph-constructive solving method. This
method presents many advantages: in particular it is fast, more methodical and
proven to be sound [Fud93]. Two steps characterise this method: graph
construction-analysis and constraint solving.

– Graph construction-analysis: the user sketch, annotated with constraints, is
translated into a graph whose vertices correspond to geometric elements: points,
lines, circles, ellipses, splines, arcs, and whose edges represent the constraints
between them. After the construction step, the graph is analysed and a constraint
solving strategy is defined. The graph construction is performed only in case of
drawing or modifying with constraint. In the example shown in Figure 3a, when
we drag a point to the first line, the constraint ellipse through five points is
maintained. In this case as soon as we select the point on the ellipse with the
right mouse button, the graph as indicated in Figure 9a is generated. Graph
analysis deduces the type of constraint to solve. In this case the constraint
“ellipse through five points” is detected and solved at each modification of the
first point. But when the first point is almost on the line, it is recognised, and the
graph is reconstructed. A node representing the line is added (as indicated in
Figure 9b). When this point is near the tangent point between the ellipse and the
line, the point acquires the label tangent, which again modifies the graph, and a
new constraint is detected corresponding to the new situation. This constraint
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becomes “ellipse through four points and tangent to one line”. The fifth point
became the tangent point with the first line.

                  

    

Figure 9(a,b). Geometric model and corresponding constraint graph.

– Constraint solving: when the construction steps involve ruler-and-compass
constructions, only quadratic equations need to be solved. However we are more
ambitious and some construction steps are permitted that are not ruler-and-
compass; and in those situations the solutions are found numerically. In the
example shown in Figure 8, the constraint which maintains the eight points
dividing the elliptic perimeter into equal parts is solved using the elliptic integral
of the second kind. Its resolution is done using Simpson’s rule, with an error of
less than 1/10000. The resolution of the tangent constraints between ellipse and
other geometric entities use iterative methods, with the same error margin.

5.1 Well-constrained problems

A well-constrained problem can have many solutions. Thanks to certain
heuristics we conduct the system to find a particular solution. The example shown in
Figure 10 is well constrained (as the circle is defined by three points), yet can have
up to 8 solutions. The solution which best matches the mouse position is used.
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Figure 10. The eight possible solutions driven by the user decision thank to the mouse
position

5.2 Under-constrained problems

Our approach supports the under-constrained problems. In this case the system is
driven by the degree of freedom of the geometric elements. For example, by default,
the circle has both of its parameters, the radius and the centre, free. Here, the user
can display the degrees of freedom of the circle and can fix or release them. The
degrees of freedom don’t intervene in the well-constrained problems. In the example
shown in Figure 11 we have a tangent between two circles c1 and c2. In case of any
modification we have several possibilities. If we would like to modify the radius of
c2 without moving the tangent point (case 1, Figure 11) we leave free both
parameters of c2. If we would like to modify the centre of c2 without modifying its
radius, we fix its radius parameter (case 2, Figure 11). This modification can be done
by dragging the circle c2, or numerically by using the numerical panel. In the first
case we could put the exact radius wanted for c2. In the second case, we could put
the exact angle between c1 and c2.

Figure 11. Different solutions driven by degrees of freedom
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5.3 Conflict Management

Some conflicts can appear in the case of modifications. In Figure 12 we show an
ellipse constrained by five points. If we drag one point, the new ellipse parameters
are computed (Figure 12b). If the conditions A¥C-B¥B>0 and the eccentricity e<1
are not satisfied (A , B , C and e correspond to the conic parameters), there is no
solution. This situation corresponds geometrically to one point being inscribed in the
polygon formed by the other four. In this case the system keeps displayed the last
solution found (Figure 12c) until the conditions are satisfied again (Figure 12d).

  

  

Figure 12(a,b,c,d). Conflict management

6. EXAMPLES

We have tested several examples which allow us to evaluate the performance of
this approach. The example of Figure 13 shows how it is easy to work with elliptic
forms. This geometric model is defined by an elliptic perimeter divided into eight
equal parts. From each point a line perpendicular to the ellipse is drawn, these lines
have the same length. It is possible to make a lot of variations of this model
maintaining all the constraint: modify the ellipse orientation, its radii. Examples of
buildings that have an elliptic perimeter include the Lipstich Building in New York
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designed by Philip Johnson and the conference room of the Chamber of commerce
in Berlin designed by Nicholas Grimshaw & Partners.

      

Figure 13. Example with an elliptic form

In Figure 14, the geometric model is defined by three circles and lines. Many variations of
this model are presented: radius (Figure 14b) and circle orientation (Figure 14c).

        

Figure 14(a,b,c). Example with circles and lines

In Figure 15, playing with circles is shown. Figure 15b shows the modification
of the small circle just by a simple dragging. The Figure 15c shows an arbelos.

        

Figure 15(a,b,c). Example with circles

The last example (Figure 16) is a model with circles and an ellipse. Some
variations are also shown.
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Figure 16. Example with circles and ellipses

7. IMPLEMENTATION

This application is developed in Java, JDK 3.0.1 of SGI’s Java software (IRIX
5.3). This release is conformant with the behaviour of Sun’s 1.1.3 JDK. Java is an
Oriented Object Language that is based loosely upon C++. Java Applets can be
transmitted over the Internet and executed, in theory by any Java-compatible Web
Browser. We find in practice that this applet executes well under Linux and
Windows/NT, but poorly on the Macintosh.

8. CONCLUSION

The approach presented in this paper show an interactive, simple and high-level
modification of part geometry via numerical panel or by simple geometry dragging.
Several aspects were discussed: the constraint and geometric object structure, the
method of constraint solving, and interaction via the user interface.

Compared to previous work, we have enlarged the geometric object structure to
ellipses and splines with constraint model enrichment. We have discussed well and
under-constrained problems. The system manages constraint conflicts, without any
instability. Another advantage of this approach is the particular user interface which
makes this system interactive, simple and useful. This interface supports the
resolution of both well and under-constrained problems.

Many extensions are presently under study:

– Constraint enrichment, particularly with respect to splines.

– A diagnostic tool for the over-constrained problem in order to guide the user to
relax a specific constraint.

– Incorporating this system as a module in a CAAD package.
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