Rank Promotion for GraphBLAS

José Moreira
IBM Corporation

FORTRAN terminology

- Rank is the number of dimensions of a variable
- Examples (https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gfortran/RANK.html):

```
program test_rank
    integer :: a
    real, allocatable :: b(:,:)

    print *, rank(a), rank(b) ! Prints: 0 2
end program test_rank
```

Rank promotion

- Rank promotion is the automatic conversion of an object to another object of higher rank (e.g., rank 0 to rank 2, rank 1 to rank 2)
- In GraphBLAS
 - Rank promotion preserves the domain
 - A scalar can be promoted to GrB_Vector or GrB_Matrix of the same domain
 - A GrB_Vector can be promoted to GrB_Matrix of the same domain
 - Rank promotion can only be applied to INPUT arguments (probably not masks?)
 - Target rank and shape (after promotion) determined from the other parameters

Tentative list of automatic rank promotions in GraphBLAS

Matrices: A, B, C, MVectors: a, b, u, w, mScalars: a, b, u, v Δ denotes a descriptor \mathbb{S} is a semiring

o is a binary operator used for accumulation

⊕ and ⊗ are binary operators, either standalone or from a monoid/semiring

 $f(\cdot)$ is a unary operator

Method	Promotions
$GrB_mxm(C, M, \odot, S, A, B, \Delta)$	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$
	$b \rightarrow \mathbf{B}$
	$\mathbf{b} o \mathbf{B}$
$GrB_vxm(\mathbf{w}, \mathbf{m}, \odot, S, \mathbf{u}, \mathbf{A}, \Delta)$	$u \rightarrow \mathbf{u}$
	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$
$GrB_{mxv}(\mathbf{w}, \mathbf{m}, \odot, S, \mathbf{A}, \mathbf{u}, \Delta)$	$u \rightarrow \mathbf{u}$
	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$
$GrB_eWiseMult(\mathbf{w}, \mathbf{m}, \odot, \otimes, \mathbf{u}, \mathbf{v}, \Delta)$	$u \rightarrow \mathbf{u}$
	$v \rightarrow \mathbf{v}$
$GrB_eWiseMult(C, M, \odot, \otimes, A, B, \Delta)$	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$
	$b \rightarrow \mathbf{B}$
	$\mathbf{b} o \mathbf{B}$
$GrB_eWiseAdd(\mathbf{w}, \mathbf{m}, \odot, \otimes, \mathbf{u}, \mathbf{v}, \Delta)$	$u \rightarrow \mathbf{u}$
	$v \rightarrow \mathbf{v}$
$GrB_eWiseAdd(\mathbf{C}, \mathbf{M}, \odot, \otimes, \mathbf{A}, \mathbf{B}, \Delta)$	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$
	$b \rightarrow \mathbf{B}$
	$\mathbf{b} \to \mathbf{B}$
$GrB_assign(C, M, \odot, A, i, m, j, n, \Delta)$	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$
$GrB_apply(\mathbf{w}, \mathbf{m}, \odot, f(\cdot), \mathbf{u}, \Delta)$	$u \rightarrow \mathbf{u}$
$GrB_apply(C, M, \odot, f(\cdot), A, \Delta)$	$a \rightarrow \mathbf{A}$
	$\mathbf{a} o \mathbf{A}$

- For purpose of rank promotion, vectors
 (a, b, u) are treated as columns
- The effect of row vectors can be achieved by using the transpose flags in the descriptor

Example: GrB_mxm(\mathbb{C} , \mathbb{M} , \mathbb{O} , \mathbb{S} , \mathbb{A} , \mathbb{B} , $\mathbb{\Delta}$)

Current signature:

- 8 new signatures (assume transpose flags properly set):
 - 1. GrB_mxm($\mathbf{C}_{m \times n}$, \mathbf{M} , \odot , \mathbb{S} , $\mathbf{A}_{m \times k}$, \mathbf{b}_k , Δ) : \mathbf{b}_k is promoted to matrix $\mathbf{B}_{k \times n}$
 - 2. GrB_mxm($\mathbf{C}_{m \times n}$, \mathbf{M} , \bigcirc , \mathbb{S} , \mathbf{a}_m , $\mathbf{B}_{k \times n}$, Δ) : \mathbf{a}_m is promoted to matrix $\mathbf{A}_{m \times k}$ GrB_mxm($\mathbf{C}_{m \times n}$, \mathbf{M} , \bigcirc , \mathbb{S} , \mathbf{a}_k^T , $\mathbf{B}_{k \times n}$, Δ) : \mathbf{a}_k is promoted to matrix $\mathbf{A}_{m \times k}$
 - 3. GrB_mxm($\mathbf{C}_{m \times n}$, \mathbf{M} , \odot , \mathbb{S} , \mathbf{a}_m , \mathbf{b}_n^T , Δ): \mathbf{a}_m is promoted to matrix $\mathbf{B}_{1 \times n}$
 - 4. GrB_mxm($\mathbf{C}_{m \times n}$, \mathbf{M} , \odot , \mathbb{S} , $\mathbf{A}_{m \times k}$, b, Δ) : b is promoted to matrix $\mathbf{B}_{k \times n}$
 - 5. ...

Explicit rank promotion through GrB_assign

```
• Current signature (standard matrix variant - \mathbf{A}_{\text{nrows} \times \text{ncols}}):
 GrB_Info GrB_assign(GrB_Matrix
                                               С,
                        const GrB_Matrix
                                               Mask,
                        const GrB_BinaryOp accum,
                        const GrB_Matrix A,
                        const GrB_Index *row_indices,
                        GrB Index
                                              nrows,
                        const GrB_Index
                                              *col_indices,
                        GrB Index
                                               ncols,
                        const GrB_Descriptor desc);
• Proposed new signature (promote \mathbf{u}_{\text{nrows}} to \mathbf{U}_{\text{nrows} \times \text{ncols}}):
 GrB_Info GrB_assign(GrB_Matrix
                                               С,
                        const GrB Matrix
                                               Mask,
                        const GrB_BinaryOp accum,
                        const GrB Vector
                                             u,
                                              *row_indices,
                        const GrB Index
                        GrB Index
                                              nrows,
                        const GrB Index
                                              *col_index,
                        GrB_Index
                                              ncols,
                        const GrB_Descriptor desc);
```