-
Notifications
You must be signed in to change notification settings - Fork 13
/
demo_im2mesh.py
198 lines (179 loc) · 7.88 KB
/
demo_im2mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from __future__ import print_function
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import torch.nn.functional as F
from tqdm import tqdm
import json
import time, datetime
from PIL import Image
import sys
sys.path.append('./Skeleton_inference/auxiliary')
from model import *
from plyio import *
from binvox_rw import *
sys.path.append('./Volume_refinement/auxiliary')
from model_global import *
from model_local import *
sys.path.append('./Volume_refinement')
import external.libmcubes as libmcubes #from external import libmcubes
import external.libsimplify as libsimplify #from external import libsimplify
import trimesh
def load_image(image_path):
im = Image.open(image_path)
crop = transforms.Compose([
transforms.CenterCrop(127),
])
resize = transforms.Compose([
transforms.Scale(size=224, interpolation=2),
transforms.ToTensor(),
])
#scale = transforms.Compose([transforms.Scale(size = 224, interpolation = 2),
#transforms.Compose([transforms.CenterCrop(224),]),
#transforms.ToTensor()])
#data = scale(im)
data = resize(crop(im))
data = data[None, :3,:,:]
return data
parser = argparse.ArgumentParser()
parser.add_argument('--gen_line_points', type=int, default = 2400, help='number of line points to generate')
parser.add_argument('--gen_square_points', type=int, default = 32000, help='number of square points to generate')
parser.add_argument('--nb_primitives_line', type=int, default = 20, help='number of primitives of squares')
parser.add_argument('--nb_primitives_square', type=int, default = 20, help='number of primitives of squares')
parser.add_argument('--nfaces', type=int, default = 10000, help='number of faces of base meshes')
parser.add_argument('--category', type=str, default='chair')
parser.add_argument('--th',type=float, default = 0.4)
opt = parser.parse_args()
print (opt)
model_line = 'Skeleton_inference/trained_models/%s/svr_cur/network.pth'%opt.category
model_square = 'Skeleton_inference/trained_models/%s/svr_sur/network.pth'%opt.category
model_global = 'Volume_refinement/trained_models/%s/global.pth'%opt.category
model_local = 'Volume_refinement/trained_models/%s/local.pth'%opt.category
network_line = SVR_CurSkeNet(num_points = opt.gen_line_points, nb_primitives = opt.nb_primitives_line)
network_square = SVR_SurSkeNet(num_points=opt.gen_square_points,nb_primitives=opt.nb_primitives_square)
network_line.cuda()
network_square.cuda()
if model_line != '' and model_square!= '':
network_line.load_state_dict(torch.load(model_line))
network_square.load_state_dict(torch.load(model_square))
print('Succefullly load the CurSkeNet and SurSkeNet model!!!')
else:
print('Please load the CurSkeNet and SurSkeNet model!!!')
network_line.eval()
network_square.eval()
grain = int(np.sqrt(opt.gen_square_points/opt.nb_primitives_square))-1
grain = grain*1.0
grain2 = int(opt.gen_line_points/opt.nb_primitives_line)-1
grain2 = grain2*1.0
vertices = []
vertices2 = []
for i in range(0,int(grain + 1 )):
for j in range(0,int(grain + 1 )):
vertices.append([i/grain,j/grain])
for i in range(0,int(grain2+1)):
vertices2.append([i/grain2,0])
grid = [vertices for i in range(0,opt.nb_primitives_square)]
grid2=[vertices2 for i in range(0,opt.nb_primitives_line)]
global_guidance = Global_Guidance()
local_synthesis = Local_Synthesis()
global_guidance.cuda()
local_synthesis.cuda()
if model_line != '' and model_square!= '':
global_guidance.load_state_dict(torch.load(model_global))
local_synthesis.load_state_dict(torch.load(model_local))
print('Succefullly load the Volume_refinement model!!!')
else:
print('Please load the Volume_refinement model!!!')
global_guidance.eval()
local_synthesis.eval()
data_root = './demo'
img_dir = os.path.join(data_root, opt.category)
skedir = os.path.join(data_root, '%s_skeleton'%opt.category)
if not os.path.exists(skedir):
os.mkdir(skedir)
meshdir = os.path.join(data_root,'%s_basemesh'%opt.category)
if not os.path.exists(meshdir):
os.mkdir(meshdir)
fns = sorted(os.listdir(img_dir))
for file in fns:
img_path = os.path.join(img_dir, file)
print(img_path)
img = load_image(img_path)
img = img.cuda()
#Stage one : skeleton inference
CurveSkeleton = network_line.forward_inference(img, grid2)
SheetSkeleton = network_square.forward_inference(img,grid)
Skeleton = torch.cat((CurveSkeleton,SheetSkeleton),1)
plyfile = os.path.join(skedir, file[:-4]+'.ply')
write_ply(filename=plyfile, points=pd.DataFrame((Skeleton.cpu().data.squeeze()).numpy()), as_text=True)
print('Skeleton Inference Finish!!!')
#Stage Two: convert pointcloud to solid volume
prediction = (Skeleton.cpu().data.squeeze()).numpy()
MIN = np.min(prediction, 0)
MAX = np.max(prediction, 0)
translate = (MIN + MAX)*0.5
translate = [float(x) for x in translate]
scale = np.max(MAX - MIN)
input32 = (prediction - translate)/scale*32 + (32-1.0)/2.0
sizes = [32, 32, 32]
input32 = sparse_to_dense(input32.T, sizes)#.astype('int32')
input32 = input32.astype('float32')
input32 = torch.from_numpy(input32[None, None, :, :, :]).type(torch.FloatTensor)
input32 = input32.cuda()
input64 = (prediction - translate)/scale*64 + (64-1.0)/2.0
sizes = [64, 64, 64]
input64 = sparse_to_dense(input64.T, sizes)#.astype('int32')
input64 = input64.astype('float32')
input64 = torch.from_numpy(input64[None, None, :, :, :]).type(torch.FloatTensor)
input64 = input64.cuda()
_, _, global_refine = global_guidance(img, input32, input64)
global_refine = F.softmax(global_refine)
global_refine = torch.ge(global_refine[:,1,:, :, :], opt.th)
global_refine = global_refine.cpu().data.squeeze().numpy()
print('Global Guidance Finish!!!', global_refine.shape)
input128 = (prediction - translate)/scale*128 + (128-1.0)/2.0
sizes = [128, 128, 128]
input128 = sparse_to_dense(input128.T, sizes)#.astype('int32')
input128 = input128.astype('float32')
refine_batch = []
input_batch = []
for i in xrange(2):
for j in xrange(2):
for k in xrange(2):
refine_batch.append(global_refine[None, None, i*32:(i+1)*32, j*32:(j+1)*32, k*32:(k+1)*32])
input_batch.append(input128[None, None, i*64:(i+1)*64, j*64:(j+1)*64, k*64:(k+1)*64])
refine_batch = np.concatenate(refine_batch, axis=0)
input_batch = np.concatenate(input_batch, axis=0)
refine_batch = torch.from_numpy(refine_batch).type(torch.FloatTensor)
input_batch = torch.from_numpy(input_batch).type(torch.FloatTensor)
refine_batch = refine_batch.cuda()
input_batch = input_batch.cuda()
output = local_synthesis(refine_batch, input_batch)
output = F.softmax(output)
output = torch.ge(output[:,1,:,:,:], opt.th)
print('Local Synthesis Finish!!!', output.size())
final = torch.cuda.FloatTensor(1, 128, 128, 128)
for i in xrange(2):
for j in xrange(2):
for k in xrange(2):
final[:, i*64:(i+1)*64, j*64:(j+1)*64, k*64:(k+1)*64] = output.data[i*4+j*2+k, :, :, :]
objfile = os.path.join(meshdir, file[:-4]+'.obj')
voxels = torch.squeeze(final).cpu().numpy()
voxels = np.pad(voxels, (1, 1), 'constant', constant_values=(0, 0)) ## padding for generating a closed shape
vertices, faces, = libmcubes.marching_cubes(voxels, 0.5)
vertices = (vertices - 63.5)/128.0 * scale + np.array([0, 0, -0.8*1.75], dtype='f4')
mesh = trimesh.Trimesh(vertices, faces, vertex_normals=None, process=False)
mesh = libsimplify.simplify_mesh(mesh, opt.nfaces)
mesh.export(objfile)
print('Base Mesh Generation Finish!!!')