-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
automl_tables_predict.py
209 lines (174 loc) · 6.71 KB
/
automl_tables_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to perform basic operations on prediction
with the Google AutoML Tables API.
For more information, the documentation at
https://cloud.google.com/automl-tables/docs.
"""
import argparse
import os
def predict(
project_id,
compute_region,
model_display_name,
inputs,
feature_importance=None,
):
"""Make a prediction."""
# [START automl_tables_predict]
# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'
# inputs = {'value': 3, ...}
from google.cloud import automl_v1beta1 as automl
client = automl.TablesClient(project=project_id, region=compute_region)
if feature_importance:
response = client.predict(
model_display_name=model_display_name,
inputs=inputs,
feature_importance=True,
)
else:
response = client.predict(
model_display_name=model_display_name, inputs=inputs
)
print("Prediction results:")
for result in response.payload:
print(
"Predicted class name: {}".format(result.tables.value)
)
print("Predicted class score: {}".format(result.tables.score))
if feature_importance:
# get features of top importance
feat_list = [
(column.feature_importance, column.column_display_name)
for column in result.tables.tables_model_column_info
]
feat_list.sort(reverse=True)
if len(feat_list) < 10:
feat_to_show = len(feat_list)
else:
feat_to_show = 10
print("Features of top importance:")
for feat in feat_list[:feat_to_show]:
print(feat)
# [END automl_tables_predict]
def batch_predict_bq(
project_id,
compute_region,
model_display_name,
bq_input_uri,
bq_output_uri,
params
):
"""Make a batch of predictions."""
# [START automl_tables_batch_predict_bq]
# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'
# bq_input_uri = 'bq://my-project.my-dataset.my-table'
# bq_output_uri = 'bq://my-project'
# params = {}
from google.cloud import automl_v1beta1 as automl
client = automl.TablesClient(project=project_id, region=compute_region)
# Query model
response = client.batch_predict(bigquery_input_uri=bq_input_uri,
bigquery_output_uri=bq_output_uri,
model_display_name=model_display_name,
params=params)
print("Making batch prediction... ")
# `response` is a async operation descriptor,
# you can register a callback for the operation to complete via `add_done_callback`:
# def callback(operation_future):
# result = operation_future.result()
# response.add_done_callback(callback)
#
# or block the thread polling for the operation's results:
response.result()
# AutoML puts predictions in a newly generated dataset with a name by a mask "prediction_" + model_id + "_" + timestamp
# here's how to get the dataset name:
dataset_name = response.metadata.batch_predict_details.output_info.bigquery_output_dataset
print("Batch prediction complete.\nResults are in '{}' dataset.\n{}".format(
dataset_name, response.metadata))
# [END automl_tables_batch_predict_bq]
def batch_predict(
project_id,
compute_region,
model_display_name,
gcs_input_uri,
gcs_output_uri,
params,
):
"""Make a batch of predictions."""
# [START automl_tables_batch_predict]
# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'
# gcs_input_uri = 'gs://YOUR_BUCKET_ID/path_to_your_input_csv'
# gcs_output_uri = 'gs://YOUR_BUCKET_ID/path_to_save_results/'
# params = {}
from google.cloud import automl_v1beta1 as automl
client = automl.TablesClient(project=project_id, region=compute_region)
# Query model
response = client.batch_predict(
gcs_input_uris=gcs_input_uri,
gcs_output_uri_prefix=gcs_output_uri,
model_display_name=model_display_name,
params=params
)
print("Making batch prediction... ")
# `response` is a async operation descriptor,
# you can register a callback for the operation to complete via `add_done_callback`:
# def callback(operation_future):
# result = operation_future.result()
# response.add_done_callback(callback)
#
# or block the thread polling for the operation's results:
response.result()
print("Batch prediction complete.\n{}".format(response.metadata))
# [END automl_tables_batch_predict]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
subparsers = parser.add_subparsers(dest="command")
predict_parser = subparsers.add_parser("predict", help=predict.__doc__)
predict_parser.add_argument("--model_display_name")
predict_parser.add_argument("--file_path")
batch_predict_parser = subparsers.add_parser(
"batch_predict", help=predict.__doc__
)
batch_predict_parser.add_argument("--model_display_name")
batch_predict_parser.add_argument("--input_path")
batch_predict_parser.add_argument("--output_path")
project_id = os.environ["PROJECT_ID"]
compute_region = os.environ["REGION_NAME"]
args = parser.parse_args()
if args.command == "predict":
predict(
project_id, compute_region, args.model_display_name, args.file_path
)
if args.command == "batch_predict":
batch_predict(
project_id,
compute_region,
args.model_display_name,
args.input_path,
args.output_path,
)