forked from WegraLee/deep-learning-from-scratch-3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_softmax_cross_entropy.py
68 lines (56 loc) · 2.35 KB
/
test_softmax_cross_entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import unittest
import numpy as np
from dezero import Variable
import dezero.functions as F
from dezero.utils import gradient_check, array_allclose
import chainer.functions as CF
class TestSoftmaxCrossEntropy(unittest.TestCase):
def test_forward1(self):
x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]], np.float32)
t = np.array([3, 0]).astype(np.int32)
y = F.softmax_cross_entropy(x, t)
y2 = CF.softmax_cross_entropy(x, t)
res = array_allclose(y.data, y2.data)
self.assertTrue(res)
def test_backward1(self):
x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]], np.float32)
t = np.array([3, 0]).astype(np.int32)
f = lambda x: F.softmax_cross_entropy(x, Variable(t))
self.assertTrue(gradient_check(f, x))
def test_backward2(self):
N, CLS_NUM = 10, 10
x = np.random.randn(N, CLS_NUM)
t = np.random.randint(0, CLS_NUM, (N,))
f = lambda x: F.softmax_cross_entropy(x, t)
self.assertTrue(gradient_check(f, x))
def test_backward3(self):
N, CLS_NUM = 100, 10
x = np.random.randn(N, CLS_NUM)
t = np.random.randint(0, CLS_NUM, (N,))
f = lambda x: F.softmax_cross_entropy(x, t)
self.assertTrue(gradient_check(f, x))
class TestSoftmaxCrossEntropy_simple(unittest.TestCase):
def test_forward1(self):
x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]], np.float32)
t = np.array([3, 0]).astype(np.int32)
y = F.softmax_cross_entropy_simple(x, t)
y2 = CF.softmax_cross_entropy(x, t)
res = array_allclose(y.data, y2.data)
self.assertTrue(res)
def test_backward1(self):
x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]], np.float32)
t = np.array([3, 0]).astype(np.int32)
f = lambda x: F.softmax_cross_entropy_simple(x, Variable(t))
self.assertTrue(gradient_check(f, x))
def test_backward2(self):
N, CLS_NUM = 10, 10
x = np.random.randn(N, CLS_NUM)
t = np.random.randint(0, CLS_NUM, (N,))
f = lambda x: F.softmax_cross_entropy_simple(x, t)
self.assertTrue(gradient_check(f, x))
def test_backward3(self):
N, CLS_NUM = 100, 10
x = np.random.randn(N, CLS_NUM)
t = np.random.randint(0, CLS_NUM, (N,))
f = lambda x: F.softmax_cross_entropy_simple(x, t)
self.assertTrue(gradient_check(f, x))