-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOursmain.py
189 lines (155 loc) · 8.49 KB
/
Oursmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import torch
import gym
import argparse
import os
import utils
import TD3
import OurDDPG
import DDPG
import ExpertDDPG
from expert import Expert
# Runs policy for X episodes and returns average reward
def evaluate_policy(policy, eval_episodes=10, expert_value=0.):
avg_reward = [] ### ground truth 6/28
our_reward = [] ### critic estimation 6/28
gamma = 0.99
for _ in range(eval_episodes):
obs = env.reset()
our_reward += [policy.value(obs).item()]
temp_reward = 0.
done = False
discount = 1
while not done:
action = policy.select_action(np.array(obs))
obs, reward, done, _ = env.step(action)
temp_reward += discount * reward ### 没有加 discount? 6/28
discount *= gamma
avg_reward += [temp_reward]
print("---------------------------------------")
#print(avg_reward)
#print(our_reward)
print("Evaluation over %d episodes: %f(GD) %f(Ours) %f(Expert)" %
(eval_episodes, np.mean(avg_reward), np.mean(our_reward), expert_value))
print("---------------------------------------")
return np.array(avg_reward), np.array(our_reward)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy_name", default="TD3") # Policy name
parser.add_argument("--env_name", default="HalfCheetah-v2") # OpenAI gym environment name ### v1改为v2
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=1e4, type=int) # How many time steps purely random policy is run for
parser.add_argument("--eval_freq", default=5e3, type=float) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=float) # Max time steps to run environment for
parser.add_argument("--save_models", action="store_true") # Whether or not models are saved
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=100, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005, type=float) # Target network update rate
parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument("--expert_timesteps", default = 3e4, type=int) ### 使用 expert policy 的 steps 6/28
parser.add_argument("--use_expert", action = "store_true") ### 是否使用 expert 训练 6/28
parser.add_argument("--expert_dir", default = None, type=str) ### expert data 目录 6/29
args = parser.parse_args()
if args.use_expert:
file_name = "%s_%s_%03d" % (args.policy_name, args.env_name, args.seed)
else:
file_name = "%s_%s_%03d_without_expert" % (args.policy_name, args.env_name, args.seed)
print("---------------------------------------")
print("Settings: %s" % (file_name))
print("---------------------------------------")
if not os.path.exists("./results/" + args.env_name):
os.makedirs("./results/" + args.env_name)
if args.save_models and not os.path.exists("./pytorch_models/" + args.env_name):
os.makedirs("./pytorch_models/" + args.env_name)
env = gym.make(args.env_name)
# Set seeds
env.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
# Initialize policy
if args.policy_name == "TD3": policy = TD3.TD3(state_dim, action_dim, max_action)
elif args.policy_name == "OurDDPG": policy = OurDDPG.DDPG(state_dim, action_dim, max_action)
elif args.policy_name == "DDPG": policy = DDPG.DDPG(state_dim, action_dim, max_action)
elif args.policy_name == "ExpertDDPG": policy = ExpertDDPG.ExpertDDPG(state_dim, action_dim, max_action)
replay_buffer = utils.ReplayBuffer()
### expert 6/28
expert = Expert(args.expert_dir)
value_expert = expert.value() ### 计算 expert 的 value 6/28
all_episode_reward = []
total_timesteps = 0
timesteps_since_eval = 0
episode_num = 0
done = True
# Evaluate untrained policy
reward_gd, reward_pred = evaluate_policy(policy, expert_value=value_expert)
value_step = [total_timesteps]
value_true = [reward_gd]
value_pred = [reward_pred]
while total_timesteps < args.max_timesteps:
expert_flag = args.use_expert and (total_timesteps < args.expert_timesteps)### 决定当前是否使用expert policy 6/28
if done:
if total_timesteps != 0:
print(("Total T: %d Episode Num: %d Episode T: %d Reward: %f") % (total_timesteps, episode_num, episode_timesteps, episode_reward))
all_episode_reward += [episode_reward] ### 记录 6/29
if args.policy_name == "TD3":
policy.train(replay_buffer, episode_timesteps, args.batch_size, args.discount, args.tau, args.policy_noise, args.noise_clip, args.policy_freq)
else:
policy.train(expert, replay_buffer, episode_timesteps,
args.batch_size, args.discount, args.tau, expert_flag) ### 6/28
# Evaluate episode
if timesteps_since_eval >= args.eval_freq:
timesteps_since_eval %= args.eval_freq
reward_gd, reward_pred = evaluate_policy(policy, expert_value=value_expert)
value_step += [total_timesteps]
value_true += [reward_gd]
value_pred += [reward_pred]
if args.save_models:
policy.save(file_name, directory="./pytorch_models/"+args.env_name)
#print(evaluations)
np.savez("./results/" + args.env_name + "/%s" % (file_name),
value_step=value_step, value_true=value_true, value_pred=value_pred,
value_expert=value_expert, expert_timesteps=args.expert_timesteps,
episode_reward = all_episode_reward)
# Reset environment
obs = env.reset()
done = False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Select action randomly or according to policy
### 刚开始只是随机采样 action 6/28
### 到一定时间之后再用 policy 计算 action 6/28
if total_timesteps < args.start_timesteps:
action = env.action_space.sample()
else:
action = policy.select_action(np.array(obs))
if args.expl_noise != 0:
action = (action + np.random.normal(0, args.expl_noise, size=env.action_space.shape[0])).clip(env.action_space.low, env.action_space.high)
# Perform action
### 在仿真环境中执行 action 并观测 state 和 reward 6/28
new_obs, reward, done, _ = env.step(action)
done_bool = 0 if episode_timesteps + 1 == env._max_episode_steps else float(done)
episode_reward += reward ### 一个 episode 中 reward 是累加的 6/28
# Store data in replay buffer
replay_buffer.add((obs, new_obs, action, reward, done_bool))
obs = new_obs
episode_timesteps += 1
total_timesteps += 1
timesteps_since_eval += 1
# Final evaluation
reward_gd, reward_pred = evaluate_policy(policy, expert_value=value_expert)
value_step += [total_timesteps]
value_true += [reward_gd]
value_pred += [reward_pred]
if args.save_models:
policy.save("%s" % (file_name), directory="./pytorch_models/" + args.env_name)
np.savez("./results/" + args.env_name + "/%s" % (file_name),
value_step=value_step, value_true=value_true, value_pred=value_pred,
value_expert=value_expert, expert_timesteps=args.expert_timesteps,
episode_reward = all_episode_reward)