-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTheories-of-gravitation.tex
2436 lines (2152 loc) · 166 KB
/
Theories-of-gravitation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% !TEX encoding = UTF-8 Unicode
% !TEX TS-program = lualatex
% !TEX spellcheck = en_US
\documentclass[a4paper,12pt]{book}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[italian,english]{babel}
\usepackage{microtype}
\usepackage{pgf,tikz}
\usepackage{mathrsfs}
\usetikzlibrary{arrows}
\usepackage{amsmath,amssymb,mathtools,xcolor,booktabs,caption,amsthm,dsfont,cancel,braket,tensor}
\usepackage[separate-uncertainty=true,multi-part-units=single]{siunitx}
\usepackage{tikz-feynman}
\tikzfeynmanset{compat=1.0.0}
\usepackage{hyperref}
\hypersetup{
colorlinks = true, % Colours links instead of ugly boxes
urlcolor = blue, % Colour for external hyperlinks
linkcolor = blue, % Colour of internal links
citecolor = blue % Colour of citations
}
\usepackage[nameinlink,noabbrev,capitalise]{cleveref}
%\captionsetup[table]{name=Figure}
%\Crefname{table}{Figure}{Figures}
\newcommand{\ped}[1]{\textormath{\textsubscript{#1}}{_{\mathrm{#1}}}}
\newcommand{\ap}[1]{\textormath{\textsuperscript{#1}}{^{\mathrm{#1}}}}
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
\renewcommand{\vec}{\mathbf}
%\newcommand{\ver}[1]{\vec{\hat #1}}
\newcommand{\dd}{\mathop{\mathrm{d}\!}{}}
\DeclareMathOperator\artanh{artanh}
\DeclareMathOperator\sgn{sgn}
\DeclareMathOperator\diag{diag}
\DeclareMathOperator\tr{tr}
\DeclareMathOperator\Li{Li}
\renewcommand{\epsilon}{\varepsilon}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}[theorem]
\newtheorem{lemma}{Lemma}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem{example}{Example}
\newtheorem{exercise}{Exercise}
\theoremstyle{remark}
\newtheorem*{remark}{Remark}
%for \dddot
\DeclareFontFamily{U}{mathb}{\hyphenchar\font45}
\DeclareFontShape{U}{mathb}{m}{n}{
<5> <6> <7> <8> <9> <10> gen * mathb
<10.95> mathb10 <12> <14.4> <17.28> <20.74> <24.88> mathb12
}{}
\DeclareSymbolFont{mathb}{U}{mathb}{m}{n}
\DeclareFontSubstitution{U}{mathb}{m}{n}
\let\dddot\relax
\DeclareMathAccent{\dddot}{0}{mathb}{"3B}
%%%
\begin{document}
\author{Giovanni Maria Tomaselli}
\title{Theories of Gravitation\\ \vspace{0.5em} \footnotesize{Transcription of Damiano Anselmi's lectures (a.y.~2018/2019).}}
\date{}
\maketitle
\emph{Stato e todo delle dispense al \today:
\begin{itemize}
\item deve essere ripensato l'allineamento di qualche formula;
\item mi piacerebbe avere un check sul termine $\abs{u}$ nell'effetto Unruh (nel caso del moto iperbolico);
\item prima o poi forse vorrò riscrivere gli indici dei tensori col pacchetto tensor (che già uso, ma per altre cose).
\end{itemize}}
\vfill
These notes are a non-official transcription of Damiano Anselmi's lectures (Theories of Gravitation A), originally written for personal use. You can find the videos of the lectures at his YouTube channel \href{https://www.youtube.com/watch?v=VRAMDa6kpqw&list=PLlx_2qxtgAiO_FCa3WvC-39J6c_EpE2wK}{Quantum Gravity}. I made some small corrections and changes with respect to the videos; any mistake in these notes is my own fault, since prof.~Anselmi was never called into question. Please, let me know any suggestion, typo or error at \href{mailto:[email protected]}{[email protected]}. The source code is available on \href{https://github.com/GimmyTomas/Theories-of-gravitation}{GitHub}.
\vspace{1cm}
\begin{center}
%\begin{wrapfloat}{figure}{l}{0pt}\includegraphics{by-nc-sa-eu.eps}\end{wrapfloat}
\includegraphics{by-nc-sa-eu.eps}
\noindent Relased under Creative Commons:\\
\href{https://creativecommons.org/licenses/by-nc-sa/4.0/}{Attribution-NonCommercial-ShareAlike 4.0 International}.
\end{center}
\vspace{1cm}
Latest update: \today.
\vspace{1cm}
\paragraph{Acknowledgements.} Huge thanks to Salvatore Raucci and Pietro Pelliconi for pointing out several errors and typos.
\tableofcontents
\chapter{Differential geometry}
\section{Manifolds}
\begin{definition}
A \emph{topological space} is a pair $\{X,V\}$, where
\begin{itemize}
\item $X$ is a non-empty set;
\item $V$ is a family of subsets of $X$, called \emph{open sets}, such that
\begin{enumerate}
\item $X\in V$, $\varnothing\in V$;
\item $A,B\in V\implies A\cup B\in V$, $A\cap B\in V$;
\item the union of an infinite number of subsets $A_i\in V$ belongs to $V$.
\end{enumerate}
\end{itemize}
\end{definition}
\begin{definition}
A \emph{closed set} is the complement of an open set.
\end{definition}
\begin{definition}
A topological space $\{X,V\}$ is \emph{separated} (or a \emph{Hausdorff space}) if $\forall\, p,q\in X$, $p\ne q$, $\exists\, U_p,U_q\in V$ such that $p\in U_p$, $q\in U_q$, $U_p\cap U_q=\varnothing$.
\end{definition}
\begin{definition}
Given a topological space $\{X,V\}$ and a point $p\in X$, a \emph{neighbourhood} of $p$ is any open set that contains $p$.
\end{definition}
\begin{definition}
A \emph{cover} of a topological space $\{X,V\}$ is a family $\mathcal U$ of open sets $U_i\in V$ such that
\[\bigcup_i U_i=X.\]
\end{definition}
\begin{definition}
A function $f\colon X\to Y$ between two topological spaces $\{X,V\}$ and $\{Y,W\}$ is \emph{continuous} if $A\in W\implies f^{-1}(A)\in V$.
\end{definition}
\begin{definition}
A \emph{homeomorphism} is a continuous bijective function between topological spaces such that its inverse is also continuous.
\end{definition}
\begin{definition}
A \emph{topological manifold} is a separated topological space that admits a cover $\mathcal U$ such that for every $U_i\in\mathcal U$ there exists a homeomorphism $\varphi_i\colon U_i\to\mathbb{R}^n$ for some $n$. Every pair $(U_i,\varphi_i)$ is called \emph{chart}; the family of charts is called \emph{atlas}.
\end{definition}
\begin{example}
Every open subset of $\mathbb R^n$ is a topological manifold.
\end{example}
\begin{example}
The $n$-sphere $S^n=\{(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_1^2+\ldots+x_{n+1}^2=1\}$ with the cover
\[\mathcal U=\{U_i^\pm\}_{i=1}^{n+1},\quad U_i^\pm=\{(x_1,\ldots,x_{n+1})\in S^n\mid x_i\gtrless0\}\]
and the homeomorphisms $\varphi_i^\pm\colon U_i^\pm\to R^n$ defined as
\[\varphi_i^\pm(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_{n+1})=(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1})\]
is a topological manifold.
\end{example}
\begin{example}
The Schwarzschild black hole, with Schwarzschild and Eddington-Finkelstein coordinates.
\end{example}
\begin{example}
If $X$ and $Y$ are topological manifolds, $X\times Y$ is a topological manifold.
\end{example}
\begin{definition}
A topological manifold is a \emph{differentiable manifold of class $C^k$} if for every two charts $(U_i,\varphi_i)$ and $(U_j,\varphi_j)$ such that $U_{ij}\equiv U_i\cap U_j\ne\varnothing$, the function $\varphi_{ij}\equiv \varphi_i\circ\varphi_j^{-1}\colon\varphi_j(U_{ij})\to\varphi_i(U_{ij})$ between open subsets of $\mathbb R^n$ is $k$ times differentiable. If $k>0$ the maps $\varphi_{ij}$ are called \emph{diffeomorphisms}.
\end{definition}
\begin{definition}
Let $M$ denote a differentiable manifold of class $C^k$, $k\ge1$, and $I$ denote an interval of $\mathbb R$. A \emph{curve} of class $C^k$ is a map $\gamma\colon I\to M$ such that $\forall\, t\in I$ and $\forall\, (U,\varphi)$ chart such that $U$ is a neighbourhood of $\gamma(t)$, the function $\varphi\circ\gamma\big|_{\gamma^{-1}(U)}\colon \gamma^{-1}(U)\to \mathbb R^n$ is $k$ times differentiable.
\end{definition}
\begin{definition}
Let $M$ be a differentiable manifold, $p\in M$ and $\gamma_1(t)\colon I_1\to M$ and $\gamma_2(t)\colon I_2\to M$ two curves such that $p\in\gamma(I_1)$ and $p\in\gamma(I_2)$. Than, if $(U,\varphi)$ is a chart such that $U$ is a neighbourhood of $p$, the two curves are \emph{tangent in $p$} if
\[\frac{\dd}{\dd t}\Bigl(\varphi\circ\gamma_1\big|_{\gamma_1^{-1}(U)}\Bigr)\Big|_{t=\gamma_1^{-1}(p)}=\frac{\dd}{\dd t}\Bigl(\varphi\circ\gamma_2\big|_{\gamma_2^{-1}(U)}\Bigr)\Big|_{t=\gamma_2^{-1}(p)}.\]
\end{definition}
This definition does not depend on the chart. In fact, let $(U',\varphi')$ be another chart such that $p\in U'$. Than (omitting the appropriate restriction of every function),
\[
\begin{split}
\frac{\dd}{\dd t}\bigl(\varphi'\circ\gamma_1\bigr)\Big|_{t=\gamma_1^{-1}(p)}&=\frac{\dd}{\dd t}\bigl(\varphi'\circ\varphi^{-1}\circ\varphi\circ\gamma_1\bigr)\Big|_{t=\gamma_1^{-1}(p)}=\\
&=\nabla(\varphi'\circ\varphi^{-1})\Big|_{\varphi(p)}\ \frac{\dd}{\dd t}\bigl(\varphi\circ\gamma_1\bigr)\Big|_{t=\gamma_1^{-1}(p)}
\end{split}
\]
and $\nabla(\varphi'\circ\varphi^{-1})\big|_{\varphi(p)}$ does not depend on the curve. This allows us to define an equivalence relation between curves.
\begin{definition}
Let $M$ be a differentiable manifold, $p\in M$, $\Omega(p)$ the set of all curves $\gamma$ that pass through $p$. Let us define the following equivalence relation: $\gamma_1\sim_p\gamma_2$ if they are tangent in $p$. The quotient $T_p\equiv\Omega(p)/\sim_p$ is the \emph{tangent space} in $p$ to $M$.
\end{definition}
Every tangent space is naturally endowed with a structure of vector space, thanks to the isomorphism between $T_p$ and $\mathbb R^n$ given by $[\gamma]\to\frac{\dd}{\dd t}\bigl(\varphi\circ\gamma\bigr)\big|_{t=\gamma^{-1}(p)}$, where we have fixed a chart $(U,\varphi)$.
\section{Vector fields}
\begin{definition}
A \emph{smooth} manifold is a differentiable manifold of class $C^\infty$.
\end{definition}
\begin{definition}
Let $M$ be a smooth manifold. A function $f\colon U\to R$, where $(U,\varphi)$ is a chart, is of class $C^k$ (or \emph{smooth}) if $f\circ\varphi^{-1}$ is $C^k$ (or $C^\infty$).
\end{definition}
From now on, $M$ will denote a smooth manifold of dimension $n$ and we will refer to the points of $M$ and to the functions $f$ defined on $M$ as their ``coordinates'' in any chosen chart. For example, $C^k(M)$ will denote the set of functions that are $C^k$ in every chart.
\begin{definition}
Two smooth functions $f$ and $g$ are equivalent ($f\sim_p g$) with respect to a point $p\in M$ if there exists a neighbourhood of $p$ where they coincide. The quotient $\mathcal G_p$ between the set of smooth functions in $p$ and $\sim_p$ is called \emph{space of the germs of the smooth functions in $p$}.
\end{definition}
\begin{definition}
A \emph{derivation} in $p$ is a map $X\colon \mathcal G_p\to\mathbb R$ such that
\begin{itemize}
\item $X(f+g)=X(f)+X(g)$;
\item $X(\lambda)=0\ \forall\,\lambda\in\mathbb R$;
\item $X(fg)=f(p)X(g)+X(f)g(p)$.
\end{itemize}
From the last two properties follows that $X(\lambda f)=\lambda X(f)$.
\end{definition}
The space $\mathcal D_p$ of derivations in $p$ is a vector space.
\begin{lemma}
\label{lemma:smooth}
Let $U\subseteq\mathbb R^n$ be an open set, $p=(p_1,\ldots,p_n)\in U$, and $f\in C^\infty(U)$. Then, there exist smooth functions $g_i\in C^\infty(U)$ such that $\forall\, x\in U$ the two following identities hold:
\[f(x)-f(p)=\sum_{i=1}^n(x_i-p_i)g_i(x)\quad\text{and}\quad g_i(p)=\frac{\partial f}{\partial x_i}(p).\]
\end{lemma}
\begin{proof}
Let us assume $p=0$ without loss of generality. Then
\[f(x)-f(0)=\int_0^1\frac{\dd f}{\dd t}(tx_1,\ldots,tx_n)\dd t=\int_0^1\sum_{i=1}^nx_i\frac{\partial f}{\partial x_i}(tx)\dd t\]
therefore $g_i(x)=\int_0^1\frac{\partial f}{\partial x_i}(tx)\dd t$ and $g_i(0)=\frac{\partial f}{\partial x_i}(0)$.
\end{proof}
\begin{theorem}
Let $U\subseteq\mathbb R^n$ denote an open set, $p\in U$. Then,
\[X_i=\frac{\partial}{\partial x_i}\bigg|_p\]
is a basis of $\mathcal D_p$.
\end{theorem}
\begin{proof}
Let $X\in\mathcal D_p$ and $a_i=X(x_i)$. We want to show that $X=a_iX_i$, that is $Y=X-a_iX_i=0\ \forall\,f\in\mathcal G_p$. In fact, $Y(x_i)=X(x_i)-a_jX_j(x_i)=a_i-a_j\delta_{ij}=0$ and, using \cref{lemma:smooth},
\[Y(f)=Y(f(p))+Y(x_i-p_i)g_i(p)+(p_i-p_i)Y(g_i)=0+0+0=0.\]
\end{proof}
$T_p$ is isomorphic to $\mathcal D_p$ through $\zeta\colon T_p\to\mathcal D_p$,
\[\zeta(v)(f)=\frac{\dd}{\dd t}f(\gamma(t))\bigg|_{t=0}\]
where $v=[\gamma(t)]\in T_p$, $\gamma(0)=p$. In fact, let us consider $v_i=[te_i]$, where $e_i=(0,\ldots,0,1,0,\ldots,0)$ (in the $i$-th place) in a given chart, in which the coordinates of $p$ are $(0,\ldots,0)$. Then,
\[\zeta(v_i)(f)=\frac{\dd}{\dd t}f(0,\ldots,0,t,0,\ldots,0)\bigg|_{t=0}=\frac{\partial f}{\partial x_i}\bigg|_{t=0}=X_i(f).\]
\begin{definition}
A \emph{vector field} is a linear function $X\colon C^k(M)\to C^{k-1}(M)$ such that
\begin{itemize}
\item $X(fg)=fX(g)+gX(f)$;
\item given two charts where $X=a^i(x)\frac{\partial}{\partial x_i}$ and $X=b^i(y)\frac{\partial}{\partial y^i}$ the following transformation rule holds
\[a^i(x)=b^j(y(x))\frac{\partial x^i}{\partial y^j}.\]
\end{itemize}
The space of smooth vector fields on $M$ is denoted by $\chi^\infty(M)$.
\end{definition}
If $X$ and $Y$ are vector fields, $XY$ is not a vector field in general, because it does not obey the Leibniz rule:
\[X(Y(fg))=X(fY(g)+gY(f))=X(f)Y(g)+fXY(g)+X(g)Y(f)+gXY(f).\]
However, $Z=[X,Y]=XY-YX$ is a vector field, because the first and third terms in the above expresion cancel out. Locally, if
\[X=a_i(x)\frac{\partial}{\partial x^i},\quad Y=b_i(x)\frac{\partial}{\partial x^i},\]
then
\[\begin{split}
Z(f)&=[X,Y](f)=X(Y(f))-Y(X(f))=\\
&=a_i\frac{\partial}{\partial x^i}\biggl(b_j\frac{\partial f}{\partial x^j}\biggr)-b_i\frac{\partial}{\partial x^i}\biggl(a_j\frac{\partial f}{\partial x^j}\biggr)=\\
&=a_i\frac{\partial b_j}{\partial x^i}\frac{\partial f}{\partial x^j}-b_i\frac{\partial a_j}{\partial x^i}\frac{\partial f}{\partial x^j},
\end{split}\]
therefore
\[Z=[X,Y]=c_i(x)\frac{\partial}{\partial x^i},\qquad c_i=a_j\frac{\partial b_i}{\partial x^j}-b_j\frac{\partial a_i}{\partial x^j}.\]
The commutator satisfies the following properties
\begin{itemize}
\item $[X,Y]=-[Y,X]$;
\item $[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0$;
\item $[fX,Y]=f[X,Y]-Y(f)X$, in fact
\[[fX,Y](g)=fXY(g)-Y(fX(g))=fXY(g)-Y(f)X(g)-fYX(g).\]
\end{itemize}
\begin{definition}
If $\mathcal A$ is an algebra, a \emph{derivation} $D$ of $\mathcal A$ is a linear map $D\colon \mathcal A\to \mathcal A$ such that $D(ab)=aD(b)+bD(a)\ \forall\,a,b\in\mathcal A$.
\end{definition}
Let $\mathcal A=C^\infty(M)$ and $X\in\chi^\infty(M)$. Then $f\to X(f)$ is a derivation of $\mathcal A$. Conversely, every derivation of $\mathcal A$ is associated with one and only one vector field $X\in\chi^\infty(M)$.
\begin{definition}
The \emph{tangent bundle} $T_M=\bigcup_{p\in M}T_p$ of $M$ is a $(2n)$-dimensional smooth manifold which is a ``local product'' between the charts of $M$ and $\mathbb R^n$. This means that a point $p=(x_1,\ldots,x_n)$ and a tangent vector $X=a_i\frac{\partial}{\partial x^i}$ identify a point in $T_M$ with coordinates $(x_1,\ldots,x_n,a_1,\ldots,a_n)$. Indeed, the changes of coordinates $b^i=\frac{\partial y^i}{\partial x^j}a^j$ are smooth functions.
\end{definition}
\begin{definition}
A \emph{section of the tangent bundle} is a function $s\colon M\to T_M$ which is the identity on the first $n$ coordinates. Clearly, vector fields are in one-to-one correspondance with the sections of $T_M$, since $s(x)=(x_1,\ldots,x_n,a_1(x),\ldots,a_n(x))$.
\end{definition}
\begin{definition}
Let $p\in M$, $f\colon M\to \mathbb R$, $f\in C^k(M)$, $k\ge1$. The \emph{differential} of $f$ in $p$ is $\dd f(p)\colon T_p\to\mathbb R$ defined as $\dd f(X)=X(f)\ \forall\,X\in T_p$. In local coordinates, if $X=a^i(x)\frac{\partial}{\partial x^i}$, then $\dd f(X)=X(f)=a^i(p)\frac{\partial f}{\partial x^i}\big|_p$. The differential is an element of the dual of $T_p$ (called \emph{cotangent space}), that is, $\dd f(p)\in T_p^*$.
\end{definition}
\begin{example}
\label{example:differential}
If $f=x^i$, then $\dd x^i(X)=X(x_i)=a^i$ and $\dd x^i\bigl(\frac{\partial}{\partial x^j}\bigr)=\delta^i_j$. So, in general, $\dd f(X)=\frac{\partial f}{\partial x^i}\dd x^i(X)$ (dropping the arguments we find the familiar formula $\dd f=\frac{\partial f}{\partial x^i}\dd x^i$). This expression shows that the $\dd x^i$ are a basis of $T_p^*$.
\end{example}
\begin{example}
$\dd f(gX)=gX(f)=g\dd f(X)$, so we can take function out of differentials.
\end{example}
Let us see what happens when we change coordinates from $x$ to $y$, using the results of \cref{example:differential}.
\[\dd y^k\biggl(\frac{\partial}{\partial x^j}\biggr)=\frac{\partial y^k}{\partial x^i}\dd x^i\biggl(\frac{\partial}{\partial x^j}\biggr)=\frac{\partial y^k}{\partial x^i}\delta^i_j=\frac{\partial y^k}{\partial x^j}\]
Using this expression,
\[\dd x^i\biggl(\frac{\partial}{\partial x^j}\biggr)=\delta^i_j=\frac{\partial y^k}{\partial x^j}\frac{\partial x^i}{\partial y^k}=\frac{\partial x^i}{\partial y^k}\dd y^k\biggl(\frac{\partial}{\partial x^j}\biggr),\]
therefore (dropping the arguments)
\begin{equation}
\dd x^i=\frac{\partial x^i}{\partial y^j}\dd y^j.
\label{eqn:changediff}
\end{equation}
\begin{definition}
The \emph{cotangent bundle} $T_M^*=\bigcup_{p\in M}T_p^*$ is a $(2n)$-dimensional smooth manifold which is a ``local product'' between the charts of $M$ and $\mathbb R^n$. This means that a point $p=(x_1,\ldots,x_n)$ and a cotangent vector $\omega_i\dd x_i$ identify a point in $T_M^*$ with coordinates $(x_1,\ldots,x_n,\omega_1,\ldots,\omega_n)$. Indeed, the changes of coordinates $\omega'_i=\omega_j\frac{\partial x^j}{\partial y^i}$ are smooth functions (this formula comes from $\omega_i\dd x^i=\omega_i\frac{\partial x^i}{\partial y^j}\dd y^j=\omega'_j\dd y^j$, where we used \cref{eqn:changediff}).
\end{definition}
\begin{definition}
A \emph{section of the cotangent bundle} (or \emph{1-form}, or \emph{differential form}) is a function $\omega\colon M\to T_M^*$ which is the identity on the first $n$ coordinates. Locally, $\omega=\omega_i(x)\dd x^i$.
\end{definition}
The action of a differetial form on a vector field $X=a^i(x)\frac{\partial}{\partial x^i}$ is
\[\omega(X)=\omega_i(x)\dd x^i\biggl(a^j(x)\frac{\partial}{\partial x^j}\biggr)=\omega_i(x)a^j(x)\dd x^i\biggl(\frac{\partial}{\partial x^i}\biggr)=\omega_i(x)a^i(x).\]
\begin{definition}
An \emph{antisymmetric form of degree $s=2$}, denoted as
\[\omega_2=\frac{\omega_{ij}(x)}{2}\dd x^i\wedge x^j,\] is a map $\omega_2\colon T_p\times T_p\to\mathbb R$ defined via the action of the differentials
\[\dd x^i\wedge \dd x^j(X,Y)=\det
\begin{pmatrix}
\dd x^i(X)& \dd x^i(Y)\\
\dd x^j(X)& \dd x^j(Y)
\end{pmatrix}=\det
\begin{pmatrix}
a^i& b^i\\
a^j& b^j
\end{pmatrix}=a^ib^j-a^jb^i.\]
Thanks to the antisymmetry, $\omega_2(X,Y)=\omega_{ij}a^ib^j$. The generalization to a form of arbitrary degree $s$
\[\omega_s=\frac{1}{s!}\omega_{i_1,\ldots,i_s}\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_s}\]
is straightforward ($\omega_{i_1,\ldots,i_s}$ is completely antisymmetric).
\end{definition}
\begin{definition}
$\wedge^sT_M^*$ is the space of the antisymmetric forms of degree $s$.
\end{definition}
\begin{definition}
A \emph{symmetric form of degree $s=2$}, denoted as
\[g=\frac{g_{ij}(x)}{2}\dd x^i\otimes x^j,\] is a map $g\colon T_p\times T_p\to\mathbb R$ defined via the action of the differentials
\[\dd x^i\otimes \dd x^j(X,Y)=a^ib^j+a^jb^i.\]
Thanks to the symmetry, $g(X,Y)=g_{ij}a^ib^j$. We do not specify the definition for arbitrary degree $s$.
\end{definition}
\begin{definition}
$\bigl(T_M^*\bigr)^{\otimes s}$ is the space of the symmetric forms of degree $s$.
\end{definition}
The symbols $\wedge$ and $\otimes$ are often omitted and left understood.
\begin{definition}
The \emph{exterior derivative} $\dd\colon\wedge^mT_M^*\to\wedge^{m+1}T_M^*$ is defined locally on
\[\omega=\frac{1}{m!}\omega_{i_1,\ldots,i_m}(x)\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_m}\]
as
\[\dd\omega=\frac{1}{m!}\partial_j\omega_{i_1,\ldots,i_m}(x)\dd x^j\wedge\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_m}\]
\end{definition}
\begin{exercise}
Transformations under a change of coordinates: no need to define a ``covariant derivative'' here.
\end{exercise}
The exterior derivative is nilpotent ($\dd^2=0$): in fact, the two partial derivatives commute and are contracted with an antisymmetric object.
\begin{definition}
A differential form $\omega$ is \emph{closed} if $\dd\omega=0$. Locally,
\[\partial_{[i}\omega_{i_1,\ldots,i_m]}=0.\]
\end{definition}
\begin{definition}
A differential form $\omega$ of degree $k\ge 1$ is \emph{exact} if there exists a differential form $\alpha$ of degree $k-1$ such that $\omega=\dd\alpha$.
\end{definition}
An exact form is always closed thanks to the nilpotency of $\dd$. It is not true that a closed form is always exact, but it is in an open subset of $\mathbb R^n$. Let us see some examples, wich will be proved rigourously in a while.
\begin{example}
Let us consider the circle $S^1$ parametrized by the angle $\theta$. Consider the differential form $\omega=\dd\theta$. It is closed ($\dd\omega=0$), but not exact. In fact, the expression $\omega=\dd\theta$ is local and does not make sense globally, since $\theta$ is not a 0-form (it is not a smooth function defined on $S^1$).
\end{example}
\begin{example}
On the torus $T=S^1\times S^1$ parametrized by the angles $x$ and $y$ on the two circles, the forms $1$, $\dd x$, $\dd y$ and the volume form $\dd x\wedge \dd y$ are not exact.
\end{example}
\begin{example}
On $S^2$ parametrized in spherical coordinates, the form $1$ and the volume form $\dd\Omega=\sin\theta\dd\theta\wedge\dd\phi$ are not exact.
\end{example}
\begin{theorem}[Stokes]
Let $V$ denote an open set and $\partial V$ its boundary. If $\omega$ is a differential form, then
\[\int_V\dd\omega=\int_{\partial V}\omega.\]
\end{theorem}
\begin{corollary}
A volume form $\omega$ (for example on $S^2$) is never exact, because if $\omega=\dd\sigma$ for a differential form $\sigma$, then
\[4\pi=\int_{S^2}\omega=\int_{S^2}\dd\sigma=\int_{\partial S^2}\sigma=0.\]
\end{corollary}
In electromanetism, from the vector potential $A=A_\mu\dd x^\mu$ we define the field strength
\[F=\dd A=\partial_\nu A_\mu\dd x^\nu\wedge x^\mu=\frac{1}{2}F_{\mu\nu}\dd x^\mu\wedge\dd x^\nu,\qquad F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu.\]
The equation $\dd F=0$ is called Bianchi identity.
\begin{definition}
Two differential forms $\omega_1$ and $\omega_2$ are \emph{equivalent} ($\omega_1\sim\omega_2$) if $\omega_1-\omega_2$ is exact. The quotient $\wedge^s T_M^*/\sim$ defines the \emph{cohomology} of differential forms.
\end{definition}
\begin{example}
An exact differential form is equivalent to 0.
\end{example}
The boundary operator is nilpotent: $\partial^2=0$. This allows to define the notion of \emph{homology}.
\begin{example}
On $S^2$, the point (``dual'' of the volume form $\dd\Omega$) is not the boundary of anything, just like $S^2$ itself (``dual'' of the form 1). There are no 1-forms that are cohomologically non trivial, because there are no closed curves (their dual) that are homologically non trivial, since they are the boundary of something.
\end{example}
\begin{example}
On the torus, there are two types of closed curves which are not the boundary of anything. The homology is given by the point, these two classes of curves, and the torus itself.
\end{example}
\begin{example}
On a Riemann surface with a genus $g$, there are $2g$ types of closed curves which are not the boundary of anything. The homology is given by the point, these $2g$ classes of curves, and the manifold itself.
\end{example}
\begin{definition}
The \emph{Betti numbers} are the dimensions of the homology classes.
\end{definition}
\begin{example}
On a Riemann surface with a genus (``number of holes'') $g$, the Betti numbers are $b_0=1$ (the point), $b_1=2g$ and $b_2=1$ (the manifold). The quantity $b_0-b_1+b_2=2-2g$ is the Euler characteristics (the quantity that for polyhedra is $\text{\#vertices}-\text{\#edges}+\text{\#faces}$) of the Riemann surface.
\end{example}
\begin{definition}
The \emph{exterior product} of two differential forms
\[\omega=\omega_{i_1,\ldots,i_m}\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_m}\quad\text{and}\quad\Omega=\Omega_{i_1,\ldots,i_n}\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_n}\]
is
\[\omega\wedge\Omega=\omega_{i_1,\ldots,i_m}\Omega_{i_{m+1},\ldots,i_{m+n}}\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_{m+n}}.\]
\end{definition}
The rule
\[\omega\wedge\Omega=(-1)^{\deg\omega\cdot\deg\Omega}\Omega\wedge\omega\]
says how to commute differential forms in a exterior product.
\begin{example}
$\dd x\wedge\dd y=-\dd y\wedge\dd x$ and $\dd x\wedge\dd y\wedge\dd z=\dd y\wedge\dd z\wedge\dd x$.
\end{example}
\begin{exercise}
The exterior derivative of the exterior product is
\[\dd(\omega\wedge\Omega)=\dd\omega\wedge\Omega+(-1)^{\deg\omega}\omega\wedge\dd\Omega.\]
\end{exercise}
\begin{definition}
A \emph{derivation of a vector field} (or \emph{linear connection}) is a map $\nabla\colon \chi^\infty(M)\times\chi^\infty(M)\to\chi^\infty(M)$, $(X,Y)\to\nabla_XY\equiv Z$ such that $\forall\, f,g\in C^\infty(M)$, $\forall\,X,Y,Z\in\chi^\infty(M)$ the following properties hold:
\begin{itemize}
\item $\nabla_{fX+gY}Z=f\nabla_XZ+g\nabla_YZ$;
\item $\nabla_X(Y+Z)=\nabla_XY+\nabla_XZ$;
\item $\nabla_X(fY)=f\nabla_XY+X(f)Y$;
\end{itemize}
\end{definition}
\begin{definition}
Locally, let us consider the canonical basis $\frac{\partial}{\partial x^i}$ of derivations. Then,
\[\nabla_{\frac{\partial}{\partial x^i}}\biggl(\frac{\partial}{\partial x^j}\biggr)=\Gamma_{ij}^k\frac{\partial}{\partial x^k}\]
where $\Gamma_{ij}^k$ are called \emph{Christoffel symbols}.
\end{definition}
For a generic basis $X_i$, $\nabla_{X_i}X_j=b_{ij}^kX_k$ defines some other coefficients $b_{ij}^k$.
Let $\gamma(t)$ denote a curve $\gamma(t)=(a_1(t),\ldots,a_n(t))$. Let us define $\frac{\dd}{\dd t}=\dot a_i(t)\frac{\partial}{\partial x^i}$ (the ``total derivative along $\gamma$''). Let $X$ denote a vector field $u^i(x)\frac{\partial}{\partial x^i}$. Then, the derivative of $X$ along $\gamma$ is
\begin{multline*}\nabla_{\frac{\dd}{\dd t}}X=\nabla_{\frac{\dd}{\dd t}}\biggl(u^i(x)\frac{\partial}{\partial x^i}\biggr)=u^i\nabla_{\frac{\dd}{\dd t}}\biggl(\frac{\partial}{\partial x^i}\biggr)+\frac{\dd u^i}{\dd t}\frac{\partial}{\partial x^i}=\\
=u^i\dot a_j\nabla_{\frac{\partial}{\partial x^j}}\biggl(\frac{\partial}{\partial x^i}\biggr)+\frac{\dd u^i}{\dd t}\frac{\partial}{\partial x^i}=\frac{\dd u^i}{\dd t}\frac{\partial}{\partial x^i}+u^i\dot a_j\Gamma_{ij}^k\frac{\partial}{\partial x^k}=\\
=\biggl[\frac{\dd u^i}{\dd t}+\Gamma_{kj}^i\dot a_ju^k\biggr]\frac{\partial}{\partial x^i}.\end{multline*}
\begin{definition}
$X$ is \emph{parallel} to $\gamma$ if $\nabla_{\frac{\dd}{\dd t}}X=0$, that is,
\begin{equation}
\label{eqn:paralleltransport}
\frac{\dd u^i}{\dd t}+\Gamma_{kj}^i\dot a_ju^k=0.
\end{equation}
\end{definition}
Given a point $p\in M$ and a vector $v\in T_p$ and a curve $\gamma$ such that $\gamma(0)=p$, there exists a unique field $X$ such that $X(0)=v$ and $\nabla_{\frac{\dd}{\dd t}}X=0$, which is obtained by solving the Cauchy problem \cref{eqn:paralleltransport}. Its unique solution is the \emph{parallel transport} of the vector $v$ along $\gamma$.
\begin{definition}
The \emph{curvature} $R_\nabla$ of the connection $\nabla$ is a map $\chi^\infty(M)\times\chi^\infty(M)\times\chi^\infty(M)\to\chi^\infty(M)$ defined as
\[R(X,Y)Z=\nabla_X\nabla_YZ-\nabla_Y\nabla_XZ-\nabla_{[X,Y]}Z\]
where we used that the commutator of two vector fields is a vector field. Shorting the notation, $R(X,Y)=\nabla_X\nabla_Y-\nabla_Y\nabla_X-\nabla_{[X,Y]}$.
\end{definition}
The curvature satisfies the following properties:
\begin{itemize}
\item $R(X,Y)Z$ is linear in $X$, $Y$ and $Z$;
\item $R(X,Y)Z=-R(Y,X)Z$;
\item \leavevmode\par\vspace*{\dimexpr-4pt-\parskip-\baselineskip}
\begin{exercise}$R(fX,gY)(hZ)=fghR(X,Y)Z$.\end{exercise}
\end{itemize}
\begin{definition}
Let us take $X=\frac{\partial}{\partial x^i}$, $Y=\frac{\partial}{\partial x^j}$ and $Z=\frac{\partial}{\partial x^k}$. Shortening $\frac{\partial}{\partial x^i}=\partial_i$,
\begin{multline*}R(\partial_i,\partial_j)\partial_k=\nabla_{\partial_i}\nabla_{\partial_j}\partial_k-\nabla_{\partial_j}\nabla_{\partial_i}\partial_k=\nabla_{\partial_i}(\Gamma_{jk}^l\partial_l)-\nabla_{\partial_j}(\Gamma_{ik}^l\partial_l)=\\
=\Gamma_{jk}^l\nabla_{\partial_i}(\partial_l)+\partial_i\Gamma_{jk}^l\partial_l-\Gamma_{ik}^l\nabla_{\partial_j}(\partial_l)-\partial_j\Gamma_{ik}^l\partial_l=\\
=\Gamma_{jk}^l\Gamma_{il}^m\partial_m+\partial_i\Gamma_{jk}^m\partial_m-\Gamma_{ik}^l\Gamma_{jl}^m\partial_m-\partial_j\Gamma_{ik}^m\partial_m=\\
=(\partial_i\Gamma_{jk}^m-\partial_j\Gamma_{ik}^m+\Gamma_{il}^m\Gamma_{jk}^l-\Gamma_{jl}^m\Gamma_{ik}^l)\partial_m\equiv R_{ij}{}^m{}_k\partial_m\end{multline*}
where in the last line we defined the \emph{Riemann tensor} $R_{ij}{}^m{}_k$.
\end{definition}
\begin{definition}
The \emph{torsion} is a map $\chi^\infty(M)\times\chi^\infty(M)\to\chi^\infty(M)$ defined as
\[T(X,Y)=\nabla_XY-\nabla_YX-[X,Y].\]
\end{definition}
The torsion satisfies the following properties:
\begin{itemize}
\item $T(X,Y)=-T(Y,X)$;
\item $T(fX,gY)=fgT(X,Y)$, in fact, using the properties of $\nabla$,
\begin{multline*}
\nabla_{fX}(gY)-\nabla_{gY}(fX)-[fX,gY]=\\
=f(\nabla_XYg+X(g)Y)-g(\nabla_YXf+Y(f)X)-fXgY+gYfX=\\
=fg(\nabla_XY-\nabla_YX)+fX(g)Y-gY(f)X-fg[X,Y]-fX(g)Y+gY(f)X=\\
=fg(\nabla_XY-\nabla_YX-[X,Y]).
\end{multline*}
\end{itemize}
The torsion vanishes if and only if the Christoffel symbols are symmetric:
\[T(\partial_i,\partial_j)=\nabla_{\partial_i}(\partial_j)-\nabla_{\partial_j}(\partial_i)=(\Gamma_{ij}^k-\Gamma_{ji}^k)\partial_k.\]
\begin{exercise}[First Bianchi identity]
\label{bianchitorsion}
\begin{multline*}
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=\\
=\nabla_XT(Y,Z)+\nabla_YT(Z,X)+\nabla_ZT(X,Y)+\\
+T(X,[Y,Z])+T(Y,[Z,X])+T(Z,[X,Y])
\end{multline*}
\end{exercise}
\begin{exercise}[Second Bianchi identity]
\begin{multline*}\nabla_XR(Y,Z)W+\nabla_YR(Z,X)W+\nabla_ZR(X,Y)W=\\
=R(X,T(Y,Z))W+R(Y,T(Z,X))W+R(Z,T(X,Y))W\end{multline*}
\end{exercise}
\begin{definition}
A \emph{Riemannian manifold} is a pair $(M,g)$ where $M$ is a smooth manifold and $g$ is a \emph{metric}, that is, a positive definite section of $(T_M^*)^{\otimes2}$.
\end{definition}
Expanded in the basis of $(T_M^*)^{\otimes2}$,
\[g=g_{ij}\frac{\dd x^i\otimes\dd x^j}{2}=g_{ij}\dd x^i\dd x^j\]
where we left understood the symmetry and the positivity of $g$. Let us recall that the action of $g$ on two vector fields is $g(V,W)=g_{ij}V^iW^j$, where $V=V^i\frac{\partial}{\partial x^i}$ and $W=W^i\frac{\partial}{\partial x^i}$ and this follow from $\dd x^i\bigl(\frac{\partial}{\partial x^j}\bigr)=\delta^i_j$.
We can orthonormalize $g$: let $E_i$ denote vector fields such that $g(E_i,E_j)=\delta_{ij}$ and expand all vector fields in this basis $X=a^iE_i$ obtaining
\[g(X,E_i)=a^jg(E_j,E_i)=a^j\delta_{ji}=a_i\implies X=g(X,E_i)E_i.\]
Let $\nabla$ denote a linear connection and $\nabla_g\colon\chi^\infty(M)\times\chi^\infty(M)\times\chi^\infty(M)\to C^\infty(M)$ defined as
\[\nabla_g(X,Y,Z)=X(g(Y,Z))-g(\nabla_XY,Z)-g(Y,\nabla_XZ)\]
\begin{exercise}
$\nabla_g(fX,hY,kZ)=fhk\nabla_g(X,Y,Z)$ $\forall\,f,h,k\in C^\infty(M)$.
\end{exercise}
\begin{definition}
The connection $\nabla_g$ is \emph{compatible} with the metric $g$ if $\nabla_g\equiv0$.
\end{definition}
\begin{theorem}
In a Riemannian manifold there exists one and only one torsionless connection that is compatible with the metric. Such connection is called \emph{Levi-Civita connection}.
\end{theorem}
\begin{proof}
We have to solve $\nabla_g=0$ and $T=0$. We work in the canonical basis $\partial_i$ and recall that $T=0\iff\Gamma_{ij}^k=\Gamma_{ji}^k$.
\begin{multline*}\nabla_g(\partial_i,\partial_j,\partial_k)=\partial_i(g(\partial_j,\partial_k))-g(\nabla_{\partial_i}\partial_j,\partial_k)-g(\partial_j,\nabla_{\partial_i}\partial_k)=\\
=\partial_i(g_{jk})-g(\Gamma_{ij}^m\partial_m,\partial_k)-g(\partial_j,\Gamma_{ik}^m\partial_m)=\partial_ig_{jk}-\Gamma_{ij}^mg_{mk}-\Gamma_{ik}^mg_{jm}=0\end{multline*}
Using this equation along with the ones obtained by exchanging $i$ with $j$ and then $k$ with $j$,
\[\begin{cases}
\partial_ig_{jk}-\Gamma_{ij}^mg_{mk}-\Gamma_{ik}^mg_{jm}=0\\
\partial_jg_{ik}-\Gamma_{ji}^mg_{mk}-\Gamma_{jk}^mg_{im}=0\\
\partial_kg_{ij}-\Gamma_{ki}^mg_{mj}-\Gamma_{kj}^mg_{im}=0
\end{cases}\]
we obtain (subtracting the last one from the sum of the first two and using the symmetry of $\Gamma_{ij}^k$)
\[\Gamma_{ij}^mg_{mk}=\frac{1}{2}(\partial_ig_{jk}+\partial_jg_{ki}-\partial_kg_{ij}).\]
If we denote by $g^{ij}$ the inverse of the metric (that is, $g^{ij}g_{jk}=\delta^i_k$), we can multiply the previous expression by $g^{kn}$ obtaining
\[\Gamma_{ij}^n=\frac{1}{2}g^{kn}(\partial_ig_{jk}+\partial_jg_{ki}-\partial_kg_{ij}).\]
\end{proof}
In the basis $E_i$, $g(E_i,E_j)=\delta_{ij}$. Let us define $\nabla_{E_i}E_j=b_{ij}^kE_k$ and $[E_i,E_j]=a_{ij}^kE_k$. Let us translate $T=0$ and $\nabla_g=0$ in this basis.
\[0=T(E_i,E_j)=\nabla_{E_i}E_j-\nabla_{E_j}E_i-[E_i,E_j]=(b_{ij}^k-b_{ji}^k-a_{ij}^k)E_k\]
so $a_{ij}^k=b_{ij}^k-b_{ji}^k$. The other condition gives
\begin{multline*}
0=\nabla_g(E_i,E_j,E_k)=E_i(g(E_j,E_k))-g(\nabla_{E_i}E_j,E_k)-g(E_j,\nabla_{E_i}E_k)=\\
=-g(\nabla_{E_i}E_j,E_k)-g(E_j,\nabla_{E_i}E_k)=-g(b_{ij}^mE_m,E_k)-g(E_j,b_{ik}^mE_m)=\\
=-b_{ij}^m\delta_{mk}-b_{ik}^m\delta_{jm}=-b_{ij}^k-b_{ik}^j\end{multline*}
\begin{definition}
The \emph{Riemann tensor} (again!) is a map $R\colon\chi^\infty(M)^4\to C^\infty(M)$ defined as
\[R(X,Y,Z,W)=g(R(X,Y)Z,W)\]
(recall that $R(X,Y)Z=\nabla_X\nabla_YZ-\nabla_Y\nabla_XZ-\nabla_{[X,Y]}Z$).
\end{definition}
\begin{exercise}
\[R(X,Y,Z,W)=-R(Y,X,Z,W)=-R(X,Y,W,Z)=R(Z,W,X,Y)\]
\label{riemannsymmetries}
\end{exercise}
\begin{exercise}[Bianchi identity]
$\nabla R=0$, where
\begin{multline*}
\nabla R(X,Y,Z,S,W)=X(R(Y,Z,S,W))-R(\nabla_XY,Z,S,W)-\\
-R(Y,\nabla_XZ,S,W)-R(Y,Z,\nabla_XS,W)-R(Y,Z,S,\nabla_XW).\end{multline*}
Highlight if and where we need to use $T=0$ and $\nabla_g=0$.
\end{exercise}
\begin{definition}
The \emph{Ricci tensor} is $\text{\emph{Ric}}(X,Y)=\sum_i R(X,E_i,Y,E_i)$.
\end{definition}
\begin{definition}
The \emph{scalar curvature} is $R=\sum_i \text{\emph{Ric}}(E_i,E_i)$.
\end{definition}
\begin{definition}
The \emph{interior product} (or \emph{contraction}) of a vector field $V$ and a $k$-form $\omega$ is a $(k-1)$-form defined as
\[i_V\omega(V_1,\ldots,V_{k-1})=\omega(V,V_1,\ldots,V_{k-1}).\]
\end{definition}
In local coordinates, $i_V\omega=kV^i\omega_{i,i_1,\ldots,i_{k-1}}\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_{k-1}}$.
\begin{definition}
The \emph{Lie derivative of a $k$-form} $\omega$ along a vector field $V$ is a $k$-form defined as $\mathcal L_V\omega=\dd i_V\omega+i_V\dd\omega$. Shortening the notation,
\[\mathcal L_V=\dd i_V+i_V\dd.\]
\end{definition}
\begin{example}
If $\omega$ is a 0-form (a function $f$), $\mathcal L_Vf=i_v\dd f=i_V\dd x^i\frac{\partial f}{\partial x^i}=V^i\frac{\partial f}{\partial x^i}.$
\end{example}
\begin{example}
If $\omega$ is a 1-form ($\omega=\omega_i\dd x^i$), recalling that $i_v\omega=V^i\omega_i$ and $\dd\omega=\partial_j\omega_i\dd x^j\wedge\dd x^i$,
\begin{align*}
\mathcal L_V\omega&=(\partial_jV^i\omega_i\dd x^j+V^i\partial_j\omega_i\dd x^j)+(V^j\partial_j\omega_i\dd x^i-V^i\partial_j\omega_i\dd x^j)=\\
&=(V^j\partial_j\omega_i+\partial_iV^j\omega_j)\dd x^i.\end{align*}
\end{example}
The Lie derivative satisfies the following properties:
\begin{itemize}
\item \leavevmode\par\vspace*{\dimexpr-4pt-\parskip-\baselineskip}
\begin{exercise}$\mathcal L_V(\omega_1\wedge\omega_2)=\mathcal L_V\omega_1\wedge\omega_2+\omega_1\wedge\mathcal L_V\omega_2$;\end{exercise}
\item for an $n$-form $\omega=\omega_{i_1,\ldots,i_n}\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_n}$,
\[\mathcal L_V\omega=(V^i\partial_i\omega_{i_1,\ldots,i_n}+n\partial_{i_1}V^i\omega_{i,i_2,\ldots,i_n})\dd x^{i_1}\wedge\ldots\wedge\dd x^{i_n}.\]
\end{itemize}
\begin{definition}
The \emph{Lie derivative of a vector field} $Y$ along the vector field $X$ is $\mathcal L_XY=[X,Y]$.
\end{definition}
\begin{definition}
The \emph{flow of a vector field} $X=a^i(x)\frac{\partial}{\partial x^i}$ is defined by the curves $\gamma\colon[0,1]\to M$ whose coordinates $(\phi^{i_1}(t),\ldots,\phi^{i_n}(t))$ are given by the solution of the Cauchy problem
\[\begin{cases}
\frac{\dd \phi^i(t)}{\dd t}=a^i(\phi(t))\\
\phi^i(0)=x^i
\end{cases}\]
for every point $(x_1,\ldots,x_n)$.
\end{definition}
We can rewrite the system and its solution as
\[\begin{cases}
\frac{\partial \phi^i(t,x)}{\partial t}=a^i(\phi(t,x))\\
\phi^i(0,x)=x^i.
\end{cases}\]
By definition, $\frac{\partial \phi^i}{\partial x^j}\big|_{t=0}=\delta^i_j$. Let $f\colon M\to\mathbb R$. Then,
\[\mathcal L_Xf=\lim_{t\to 0}\frac1t\bigl(f(\phi(t,x))-f(x)\bigr)=\frac{\partial f}{\partial x^i}(\phi(t,x))\frac{\partial\phi^i(t,x)}{\partial t}\bigg|_{t=0}=a^i(x)\frac{\partial f}{\partial x^i}(x).\]
Let $Y=b^i\frac{\partial}{\partial x^i}$. Then, we can ``flow the vector'',
\begin{align*}
\mathcal L_XY&=\frac{\dd}{\dd t}\biggl[b^i(\phi(t,x))\frac{\partial}{\partial \phi^i}\biggr]_{t=0}=\\
&=\frac{\dd}{\dd t}\biggl[b^i(\phi(t,x))\frac{\partial x^j}{\partial \phi^i}(\phi(t,x))\frac{\partial}{\partial x^j}\biggr]_{t=0}=\\
&=\frac{\partial\phi^k}{\partial t}\frac{\partial b^i(\phi)}{\partial \phi^k}\frac{\partial x^j}{\partial \phi^i}\frac{\partial}{\partial x^j}\bigg|_{t=0}+b^i(\phi)\frac{\partial^2x^j}{\partial t\partial \phi^i}\frac{\partial}{\partial x^j}\bigg|_{t=0}=\\
&=a^k(x)\partial_kb^i(x)\frac{\partial}{\partial x^i}-b^i(x)\partial_ia^j(x)\frac{\partial}{\partial x^j}=\\
&=[X,Y]\end{align*}
where we used that
\[\frac{\partial^2x^j}{\partial t\partial \phi^i}\bigg|_{t=0}=-\partial_ia^j(x).\]
Let's prove this last identity. Defining $M^i{}_j=\frac{\partial\phi^i}{\partial x^j}$ (and denoting for simplicity $\dd M^{-1}/\dd t\equiv\dot M^{-1}\ne (\dd M/\dd t)^{-1}$), we have $\dot M^{-1}=-M^{-1}\dot M M^{-1}$ and
\begin{gather*}-\dot M^{-1}|_{t=0}=\dot M|_{t=0},\quad\dot M^i{}_j=\frac{\partial^2\phi^i}{\partial t\partial x^j}\\
\implies (\dot M^{-1})^i{}_j\big|_{t=0}=-\frac{\partial^2\phi^i}{\partial t\partial x^j}\bigg|_{t=0}=-\frac{\partial^2\phi^i}{\partial x^j\partial t}\bigg|_{t=0}=-\partial_ja^i,\end{gather*}
which is what we wanted to prove up to an exchange of indices.
Let us now compute the Lie derivative of a 1-form $\omega=\omega_i(x)\dd x^i$. Consider $\omega_i(\phi(t,x))\dd \phi^i=\omega_i(\phi(t,x))\frac{\partial\phi^i}{\partial x^j}\dd x^j$. Then,
\begin{align*}
\mathcal L_V\omega&=\frac{\dd}{\dd t}\biggl[\omega_i(\phi(t,x))\frac{\partial\phi^i}{\partial x^j}\dd x^j\biggr]_{t=0}=\\
&=\frac{\partial\phi^j}{\partial t}\bigg|_{t=0}\partial_j\omega_i(x)\dd x^i+\omega_i(x)\frac{\partial}{\partial x^j}\frac{\partial\phi^i}{\partial t}\bigg|_{t=0}\dd x^j=\\
&=(a^j\partial_j\omega_i+\omega_j\partial_ia^j)\dd x^i
\end{align*}
The Lie derivative tells how the objects change under infinitesimal diffeomorphisms. To see that, let us finally compute the Lie derivative of the metric $g_{ij}\dd x^i\dd x^j$.
\begin{align*}
&\mathcal L_Xg=\frac{\dd}{\dd t}\biggl[g_{ij}(\phi(t,x))\frac{\partial\phi^i}{\partial x^n}\frac{\partial\phi^j}{\partial x^m}\dd x^n\dd x^m\biggr]_{t=0}=\\
&=(a^l\partial_lg_{nm}+g_{ij}\partial_na^i\delta_m^j+g_{ij}\delta_n^i\partial_ma^j)\dd x^n\dd x^m=\\
&=(a^l\partial_lg_{nm}+g_{lj}\partial_ia^l+g_{il}\partial_ja^l)\dd x^i\dd x^j,
\end{align*}
or, in components, $\mathcal L_Xg_{ij}=a^m\partial_mg_{ij}+g_{mj}\partial_ia^m+g_{im}\partial_ja^m$. Recalling that, under an infinitesimal change of coordinates $x'^\mu=x^\mu+\xi^\mu(x)$,
\[g'_{\mu\nu}(x')=g_{\rho\sigma}(x)\frac{\partial x^\rho}{\partial x'^\mu}\frac{\partial x^\sigma}{\partial x'^\nu}=g'_{\mu\nu}(x+\xi)\approx g'_{\mu\nu}(x)+\xi^\rho\partial_\rho g'_{\mu\nu}(x)\]
and that $\frac{\partial x'^\mu}{\partial x^\rho}\approx\delta_\rho^\mu+\partial_\rho\xi^\mu\implies \frac{\partial x^\rho}{\partial x'^\mu}\approx\delta^\rho_\mu-\partial_\mu\xi^\rho$ (the cross terms cancel in the product),
\[g'_{\mu\nu}(x)=g_{\mu\nu}(x)-\partial_\mu\xi^\rho g_{\rho\nu}-\partial_\nu \xi^\rho g_{\rho\mu}-\xi^\rho\partial_\rho g_{\mu\nu}=g_{\mu\nu}(x)-\mathcal L_\xi g_{\mu\nu}.\]
For a scalar field, $\phi'(x')=\phi(x)=\phi'(x+\xi)\approx\phi'(x)+\xi^\rho\partial_\rho\phi'$, so also in this case $\phi'(x)-\phi(x)\approx-\mathcal L_\xi\phi$.
\section{Lorentzian manifolds}
An invertible metric with signature $(1,-1,-1,-1)$ is assumed. From now on, we will use the standard notation in physics, where the coordinates are $x^\mu$, upper and lower indices are not equivalent, the following conventions are used
\[\eta_{\mu\nu}=\diag(1,-1,-1,-1),\qquad \frac{\partial}{\partial x^\mu}=\partial_\mu,\qquad \dd x^\mu\biggl(\frac{\partial}{\partial x^\nu}\biggr)=\delta^\mu_\nu\]
and the Christoffel symbols are defined by $\nabla_{\partial_\mu}(\partial_\nu)=\Gamma_{\mu\nu}^\rho\partial_\rho$.
The analogue of the basis $E_i$, in which $g(E_i,E_j)=\delta_{ij}$, will be
\[e_a,\qquad g(e_a,e_b)=\eta_{ab}.\]
$e_a$ are a basis for vector fields and are related to the other basis $\partial_\mu$ by
\[e_a=e_a^\mu\partial_\mu.\]
In this basis, the Christoffel symbols are
\[\nabla_{e_a}(e_b)=\gamma_{ab}^ce_c.\]
The latin indices $a$, $b$, $c$, \ldots are the \emph{flat-space indices}, while the greek indices $\mu$, $\nu$, $\rho$, \ldots are the \emph{spacetime indices}.
Let us introduce differential forms $e^a$ dual to $e_a$.
\[e^a=H_\mu^a\dd x^\mu,\qquad \delta^a_b=e^a(e_b)=H_\mu^a\dd x^\mu(e_b^\nu\partial_\nu)=H_\mu^ae_b^\nu\dd x^\mu(\partial_\nu)=H_\mu^ae_b^\mu\]
$H_\mu{}^a$ is therefore the inverse matrix of $e^\mu{}_a$ (here the indices are displaced for clarity; they won't be any longer). We can write $H_\mu^a=e_\mu^a$ without risk of confusion, because the position of the spacetime/flat-space indices is different in the two cases. Therefore, $e^a_\mu e^\mu_b=\delta^a_b$ and $e^a=e^a_\mu\dd x^\mu$. Since any matrix commutes with its inverse,
\[e^a{}_\mu e^\mu{}_b=\delta^a{}_b\implies e^\mu{}_ae^a{}_\nu=\delta^\mu{}_\nu,\]
which we will write simply as $e^\mu_ae^a_\nu=\delta^\mu_\nu$.
From the previous definitions,
\[\eta_{ab}=g(e_a,e_b)=g_{\mu\nu}e^\mu_ae^\nu_b.\]
Multiplying by $e^a_\rho e^b_\sigma$, $e^a_\rho \eta_{ab} e^b_\sigma=e^a_\rho e^b_\sigma g_{\mu\nu}e^\mu_ae^\nu_b=\delta^\mu_\rho g_{\mu\nu}\delta^\nu_\sigma=g_{\rho\sigma}$, or
\[g_{\mu\nu}=e^a_\mu\eta_{ab}e^b_\nu.\]
The $e^a_\mu$'s (called \emph{tetrad}, or \emph{vierbein}) relate the metric components in the two bases and can be used to transform spacetime to flat-space indices, or vice versa. For example,
\[g_{\mu\nu}e^\nu_c=e^\nu_ce^a_\mu\eta_{ab}e^b_\nu=e^a_\mu\eta_{ac}.\]
In other words, $g_{\mu\nu}$ ``lowers'' spacetime indices, while $\eta_{ab}$ ``lowers'' flat-space indices.
We want to translate all these objects in the language of differential forms. Let's start with the connection
$\nabla_{e_a}(e_b)=\gamma_{ab}^ce_c$. The metric compatibility condition is
\[\nabla_g(X,Y,Z)=X(g(Y,Z))-g(\nabla_XY,Z)-g(Y,\nabla_XZ)=0.\]
Applying it to the basis $e_a$,
\begin{align*}
0=\nabla_g(e_a,e_b,e_c)&=e_a(g(e_b,e_c))-g(\nabla_{e_a}e_b,e_c)-g(e_b,\nabla_{e_a}e_c)=\\
&=e_a(\eta_{bc})-\gamma_{ab}^dg(e_d,e_c)-g(e_b,e_d)\gamma_{ac}^d=\\
&=-\gamma_{ab}^d\eta_{dc}-\gamma_{ac}^d\eta_{db}.
\end{align*}
We define the \emph{spin connection} $\omega^a{}_b=\omega^a_{\mu b}\dd x^\mu=\gamma_{cb}^ae^c$ so we can multiply the previous expression by $e^a$ obtaining
\[\omega^d{}_b\eta_{dc}+\omega^d{}_c\eta_{db}=0\implies \omega^{ab}=-\omega^{ba}.\]
Then, the torsion.
\[T(e_a,e_b)=\nabla_{e_a}e_b-\nabla_{e_b}(e_a)-[e_a,e_b]=\gamma_{ab}^ce_c-\gamma_{ba}^ce_c-[e_a,e_b]\]
Multiplying the expression by $\frac{e^a\wedge e^b}{2}$ we obtain
\begin{align*}
\frac{e^a\wedge e^b}{2}T(e_a,e_b)&=\frac{e^a\wedge e^b}{2}(2\gamma_{ab}^ce_c-2e_ae_b)=\\
&=\omega^c{}_b\wedge e^be_c-e^a\wedge e^be_ae_b=\\
&=\omega^a{}_b\wedge e^be_a-e_\mu^a\dd x^\mu\wedge e_\nu^b\dd x^\nu e^\rho_a\partial_\rho e^\sigma_b\partial_\sigma=\\
&=\omega^a{}_be^be_a-\dd x^\mu\wedge e^b\partial_\mu e_b=\\
&=\omega^a{}_be^be_a-\dd x^\mu e^b_\nu\dd x^\nu \partial_\mu e^\sigma_b\partial_\sigma=\\
&=\omega^a{}_be^be_a-\dd x^\mu e^b_\nu \dd x^\nu e^\sigma_b\partial_\mu\partial_\sigma-\dd x^\mu e^b_\nu \dd x^\nu (\partial_\mu e^\sigma_b)\partial_\sigma=\\
&=\omega^a{}_be^be_a-\dd x^\mu e^b_\nu \dd x^\nu (\partial_\mu e^\sigma_b)\partial_\sigma=\\
&=\omega^a{}_be^be_a+\dd x^\mu\partial_\mu e^b_\nu\dd x^\nu e^\sigma_b\partial_\sigma=\\
&=\omega^a{}_be^be_a+\dd e^be_b=\\
&=(\dd e^a+\omega^a{}_be^b)e_a
\end{align*}
and we define $T^a=\dd e^a+\omega^a{}_be^b=\nabla e^a$, which will be called torsion from now on.
Let's do the same with the curvature $R(X,Y)Z=[\nabla_X,\nabla_Y]Z-\nabla_{[X,Y]}Z$. Defining $[e_a,e_b]=a_{ab}^de_d$,
\begin{align*}
R(e_a,e_b)e_c&=\nabla_{e_a}\nabla_{e_b}e_c-\nabla_{e_b}\nabla_{e_a}e_c-\nabla_{[e_a,e_b]}e_c=\\
&=\nabla_{e_a}(\gamma_{bc}^de_d)-\nabla_{e_b}(\gamma_{ac}^de_d)-a_{ab}^d\gamma_{dc}^fe_f=\\
&=\gamma_{bc}^d\gamma_{ad}^fe_f+e_a(\gamma_{bc}^d)e_d-\gamma_{ac}^d\gamma_{bd}^fe_f-e_b(\gamma_{ac}^d)e_d-a_{ab}^d\gamma_{dc}^fe_f.
\end{align*}
Let us multiply by $\frac{e^a\wedge e^b}{2}$:
\begin{align*}
\frac{e^a\wedge e^b}{2}R(e_a,e_b)e_c&=\omega^f{}_d\omega^d{}_ce_f+e^a\wedge e^b e_a(\gamma_{bc}^d)e_d-\frac{1}{2}e^a\wedge e^b a_{ab}^d\gamma_{dc}^fe_f\\
&=\omega^f{}_d\omega^d{}_ce_f+e^a\wedge e^b e_a(\gamma_{bc}^d)e_d-\frac{1}{2}e^a\wedge e^b a_{ab}^ge^de_g\gamma_{dc}^fe_f.
\end{align*}
We can simplify the last two terms as follows:
\[e^a\wedge e^b e_a(\gamma_{bc}^d)e_d=e_\mu^ae_\nu^b\dd x^\mu\dd x^\nu e^\rho_a\partial_\rho(\gamma_{bc}^d)e_d=\dd\gamma_{bc}^de^be_d=\dd\omega^d{}_ce_d-\gamma_{bc}^d\dd e^be_d,\]
\begin{align*}
-\frac{1}{2}e^a\wedge e^b a_{ab}^c e_c&=-\frac{1}{2}e^a\wedge e^b[e_a,e_b]=\\
&=-e_\mu^ae_\nu^b\dd x^\mu\dd x^\nu e^\rho_a(\partial_\rho e^\sigma_b)\partial_\sigma=\\
&=-\dd e^\sigma_be^b_\nu\dd x^\nu\partial_\sigma=\\
&=\dd e^b_\nu\dd x^\nu e_b=\\
&=\partial_\mu e^b_\nu\dd x^\mu\dd x^\nu e_b=\\
&=\dd e^b e_b.
\end{align*}
Summarizing,
\begin{align*}
\frac{e^a\wedge e^b}{2}R(e_a,e_b)e_c&=\omega^e{}_d\wedge\omega^d{}_ce_e+\dd\omega^d{}_ce_d-\cancel{\gamma_{bc}^d\dd e^be_d}+\cancel{e^d\dd e^ge_g\gamma_{dc}^fe_f}=\\
&=(\dd\omega^d{}_c+\omega^d{}_b\wedge\omega^b{}_c)e_d\equiv R^d{}_ce_d.
\end{align*}
We can shorten the notation: $R=\dd\omega+\omega\omega$ and $T=\nabla e=\dd e+\omega e$. Curvature and torsion are both $2$-forms, but the former has two indices and the latter only one.
Let $\wedge^k_{(m,n)}$ be the space of $k$-forms that have $m$ flat-space indices up and $n$ flat-space indices down. We have
\[e^a\in\wedge^1_{(1,0)}\qquad T^a\in\wedge^2_{(1,0)},\qquad R^a{}_b\in\wedge^2_{(1,1)}.\]
Let $T^{a_1\ldots a_m}_{b_1\ldots b_n}\in\wedge^k_{(m,n)}$. The \emph{covariant derivative} is defined as
\begin{equation}
\nabla T^{a_1,\ldots, a_m}_{b_1,\ldots, b_n}=\dd T^{a_1,\ldots, a_m}_{b_1,\ldots, b_n}+\sum_{i=1}^m\omega^{a_i}{}_cT^{a_1,\ldots ,c,\ldots, a_m}_{b_1,\ldots, b_n}-(-1)^k\sum_{i=1}^nT^{a_1,\ldots, a_m}_{b_1,\ldots, c,\ldots b_n}\omega^c{}_{b_i},
\label{eqn:covariantderivative}
\end{equation}
where the index $c$ replaces $a_i$ and $b_i$ in the two cases.
For example, for the torsion ($k=1$) this definition correctly gives $T^a=\nabla e^a=\dd e^a+\omega^a{}_be^b$. If instead $W^a\in\wedge^0_{(1,0)}$ and $V_a\in\wedge^0_{(0,1)}$,
\[\nabla W^a=\dd W^a+\omega^a{}_bW^b,\qquad \nabla V_a=\dd V_a-V_c\omega^c{}_a.\]
The covariant derivative defined in this way obeys the Leibniz rule:
\begin{align*}
\nabla(W^aV_a)&=\nabla W^aV_a+W^a\nabla V_a=\\
&=\dd W^aV_a+\omega^a{}_bW^bV_a+W^a\dd V_a-W^aV_b\omega^b{}_a=\\
&=\dd(W^aV_a)\end{align*}
\begin{exercise}
In general, if $T^{a_1,\ldots,a_m}_{b_1,\ldots,b_n}\in\wedge^k_{(m,n)}$ and $S^{c_1,\ldots,c_r}_{d_1,\ldots,d_p}\in\wedge^h_{(r,p)}$,
\[\nabla(T^{a_1,\ldots,a_m}_{b_1,\ldots,b_n}\wedge S^{c_1,\ldots,c_r}_{d_1,\ldots,d_p})=\nabla T^{a_1,\ldots,a_m}_{b_1,\ldots,b_n}\wedge S^{c_1,\ldots,c_r}_{d_1,\ldots,d_p} +(-1)^kT^{a_1,\ldots,a_m}_{b_1,\ldots,b_n}\wedge\nabla S^{c_1,\ldots,c_r}_{d_1,\ldots,d_p}.\]
\end{exercise}
Let's see how the Bianchi identities read in this language.
\begin{align*}
\nabla T&=\dd T+\omega T=\\
&=\dd(\dd e+\omega e)+\omega(\dd e+\omega e)=\\
&=\dd\omega e-\omega\dd e+\omega\dd e+\omega\omega e=\\
&=Re
\end{align*}
Notice that it is the same expression as the one of \cref{bianchitorsion}. If $T=0$ the Bianchi identity is $R\wedge e=R^a{}_be^b=0$. Expanding the curvature in the basis,
\[R^a{}_b=R_{cd}{}^a{}_b\frac{e^c\wedge e^d}{2},\]
where $R_{cd}{}^a{}_b$ are the components of the Riemann tensor (more frequently, in what follows, we will define them as $R^a{}_{bcd}$ instead). Therefore, the condition means $0=R^a{}_be^b=\frac{1}{2}R_{cd}{}^a{}_be^ce^de^b$, which, given the complete antisymmetry of $e^ce^de^b$, means
\[R_{ab}{}^c{}_d+R_{da}{}^c{}_b+R_{bd}{}^c{}_a=0.\]
The second Bianchi identity is $\nabla R=0$, that is,
\[\nabla R^a{}_b=\dd R^a{}_b+\omega^a{}_cR^c{}_b-R^a{}_c\omega^c{}_b=0\]
or simply $\nabla R=\dd R+\omega R-R\omega=0$. Indeed, substituting $R=\dd\omega+\omega\omega$,
\begin{align*}
\nabla R&=\dd(\dd\omega+\omega\omega)+\omega(\dd\omega+\omega\omega)-(\dd\omega+\omega\omega)\omega=\\
&=\dd\omega\omega-\omega\dd\omega+\omega\dd\omega+\omega\omega\omega-\dd\omega\omega-\omega\omega\omega=\\
&=0.
\end{align*}
\section{Change of basis for flat-space indices}
If a local change of coordinates transforms the differential forms as
\[e'^a=\Omega^a{}_be^b,\qquad \Omega=\Omega(x),\]
the same change of coordinates transforms the vector fields as
\[e'_a=(\Omega^{-1})^b{}_ae_b.\]
Indeed, $e'^a(e'_b)=\Omega^a{}_ce^c((\Omega^{-1})^d{}_be_d)=\Omega^a{}_c(\Omega^{-1})^d{}_b\delta^c{}_d=\delta^a_b$. For the moment, $\Omega\in\text{GL}(4,\mathbb{R})$ without any particular restriction.
Let's check how does $\omega$ transform, so we can later derive the transformation laws for torsion and curvature. Remind that $\nabla_{e_a}e_b=\gamma_{ab}^ce_c$; therefore,
\begin{align*}
\nabla_{e'_a}e'_b&=\gamma'^c_{ab}e'_c=\\
&=\nabla_{(\Omega^{-1})^d{}_ae_d}((\Omega^{-1})^e{}_be_e)=\\
&=(\Omega^{-1})^d{}_a\nabla_{e_d}((\Omega^{-1})^e{}_be_e)=\\
&=(\Omega^{-1})^d{}_a(\Omega^{-1})^e{}_b\nabla_{e_d}e_e+(\Omega^{-1})^d{}_ae_d((\Omega^{-1})^e{}_b)e_e=\\
&=(\Omega^{-1})^d{}_a(\Omega^{-1})^e{}_b\gamma_{de}^f\Omega^g{}_fe'_g+(\Omega^{-1})^d{}_ae_d((\Omega^{-1})^e{}_b)\Omega^g{}_ee'_g.
\end{align*}
Renaming the indices, we can read the transformation law of $\gamma$:
\[\gamma'^g_{ab}=(\Omega^{-1})^d{}_a(\Omega^{-1})^e{}_b\gamma_{de}^f\Omega^g{}_f+(\Omega^{-1})^d{}_ae_d((\Omega^{-1})^e{}_b)\Omega^g{}_e,\]
and finally the one of $\omega$:
\begin{align*}
\omega'^a{}_b&=\gamma'^a_{cb}e'^c=\\
&=(\Omega^{-1})^e{}_b\gamma_{ce}^f\Omega^a{}_fe^c+e_c((\Omega^{-1})^e{}_b)\Omega^a{}_ee^c=\\
&=\Omega^a{}_f\omega^f{}_e(\Omega^{-1})^e{}_b+\Omega^a{}_ee^ce_c(\Omega^{-1})^e{}_b.
\end{align*}
Using that
\[e^ce_c(f)=e^c_\mu\dd x^\mu e^\nu_c\frac{\partial}{\partial x^\nu}f=\delta^\nu_\mu\dd x^\mu\frac{\partial}{\partial x^\nu}f=\dd f,\]
and suppressing the indices, the expression eventually simplifies to
\begin{equation}
\omega'=\Omega\omega\Omega^{-1}+\Omega\dd\Omega^{-1}.
\label{eqn:transomega}
\end{equation}
From this equation, together with $e'=\Omega e$, we can derive the transformation laws of the other forms.
\begin{itemize}
\item Torsion ($T=\nabla e=\dd e+\omega e$). The differential is not affected by the change of coordinates because it has no indices, so
\begin{align*}
T'&=\nabla' e'=\\
&=\dd e'+\omega' e'=\\
&=\dd(\Omega e)+(\Omega\omega\Omega^{-1}+\Omega\dd\Omega^{-1})\Omega e=\\
&=\dd\Omega e+\Omega\dd e+\Omega\omega e+\Omega\dd\Omega^{-1}\Omega e=\\
&=\Omega\dd e+\Omega\omega e=\\
&=\Omega\nabla e=\\
&=\Omega T,
\end{align*}
where, in the fifth line, we used that
\begin{equation}
1=\Omega\Omega^{-1}\implies0=\dd\Omega\Omega^{-1}+\Omega\dd\Omega^{-1}\implies 0=\dd\Omega+\Omega\dd\Omega^{-1}\Omega.
\label{eqn:identityomega}
\end{equation}
\item Curvature ($R=\dd\omega+\omega\omega$). Using \cref{eqn:identityomega} twice,
\begin{align*}
R'=&\dd\omega'+\omega'\omega'=\\
=&\dd(\Omega\omega\Omega^{-1}+\Omega\dd\Omega^{-1})+(\Omega\omega\Omega^{-1}+\Omega\dd\Omega^{-1})(\Omega\omega\Omega^{-1}+\Omega\dd\Omega^{-1})=\\
=&\dd\Omega\omega\Omega^{-1}+\Omega\dd\omega\Omega^{-1}-\Omega\omega\dd\Omega^{-1}+\dd\Omega\dd\Omega^{-1}+\Omega\omega\omega\Omega^{-1}+\\
&\Omega\dd\Omega^{-1}\Omega\omega\Omega^{-1}+\Omega\omega\dd\Omega^{-1}+\Omega\dd\Omega^{-1}\omega\dd\Omega^{-1}=\\
=&\Omega(\dd\omega+\omega\omega)\Omega^{-1}=\\
=&\Omega R\Omega^{-1}.
\end{align*}
\item Covariant derivative. Using for example the transformation law of $T$,
\[T'=\Omega T=\Omega\nabla e=\Omega\nabla\Omega^{-1}e'=\nabla'e',\]
therefore
\[\nabla'=\Omega\nabla\Omega^{-1}.\]
\end{itemize}
\subsection{Lorentz transformations}
Note that if $g_{\mu\nu}=e_\mu^a\eta_{ab}e_\nu^b$, it is not true in general that, after a change of coordinates $e'^a_\mu=\Omega^a{}_be^b_\mu$, we still have $g'_{\mu\nu}=e^a_\mu\eta_{ab}e^b_\nu$. In fact, the basis $e_a$ is the one that diagonalizes $g$, $g(e_a,e_b)=\eta_{ab}$.
The relation, however, is preserved by Lorentz transformations. In fact, the metric is preserved
\[g'_{\mu\nu}=\Omega^a{}_ce^c_\mu\eta_{ab}\Omega^b{}_de^d_\nu=g_{\mu\nu}\]
if and only if $\Omega^a{}_c\eta_{ab}\Omega^b{}_d=\eta_{cd}$.
A change of basis that preserves the metric everywhere is called a \emph{local Lorentz transformation}. For these transformations, we will use the symbol $\Lambda$ instead of $\Omega$: $e'^a(x)=\Lambda^a{}_b(x)e^b$, which is no longer a generic element of $\text{GL}(4,\mathbb{R})$. The defining property of Lorentz transformations is therefore
\[\eta_{ab}=\Lambda^c{}_a(x)\eta_{cd}\Lambda^d{}_b(x).\]
Lorentz transformations are the ones for which the new basis still diagonalizes the metric, $g(e'_a,e'_b)=\eta_{ab}$.
A generic change of coordinates won't do that job. For example, the definition $e^a=e^a_\mu\dd x^\mu$ can be interpreted as the transformation that changes the canonical basis $\dd x^\mu$ into the flat-space basis $e^a$. We can use this to compute the transformation laws between the two basis.
\begin{itemize}
\item Connection. It is defined as $\nabla_{\partial_\mu}(\partial_\nu)=\Gamma_{\mu\nu}^\rho\partial_\rho$ in the canonical basis and as $\nabla_{e_a}(e_b)=\gamma_{ab}^ce_c$ in the flat-space basis. We defined $\omega^a{}_b=\gamma^a_{cb}e^c$, hence we should define $\Gamma^\mu{}_\nu=\Gamma^\mu_{\rho\nu}\dd x^\rho$ as well. Using \cref{eqn:transomega} and the definition of the inverse of the vierbein,
\[\omega^a{}_b=e^a_\mu\Gamma^\mu{}_\nu e^\nu_b+e^a_\mu\dd e^\mu_b.\]
This is a relation between 1-forms. We can insert the differentials $\dd x^\mu$ everywhere and equating the coefficients, writing
\[\omega_{\mu b}^a=e^a_\rho\Gamma^\rho_{\mu\nu}e^\nu_b+e^a_\nu\partial_\mu e^\nu_b.\]
This is a completely general relation about the Christoffel symbols in one basis and in another (where they are called spin connection) and no assumption (metric compatibility, torsionless, \ldots) is needed.
\end{itemize}
The definition of covariant derivative given in \cref{eqn:covariantderivative} is written in flat-space indices, but can be easily extended to objects with spacetime indices, or even to objects with an arbitrary number of, raised or lowered, flat-space or spacetime indices (that is, $T^{a_1\ldots a_m\nu_1\ldots\nu_s}_{b_1\ldots b_n\mu_1\ldots\mu_r}$), just by appropriately replacing $\omega$ with $\Gamma$. For example,
\begin{equation}
\nabla e^a_\mu=\dd e^a_\mu+\omega^a{}_be^b_\mu-e^a_\nu\Gamma^\nu{}_\mu.
\label{eqn:nablavierbein}
\end{equation}
This last expression is identically zero, regardless of any assumption (differently from the covariant derivative of the metric, which is zero by definition only under metric compatibility). In fact, it is just a rewriting of the transformation law of the connection:
\begin{gather*}
\dd x^\rho\nabla_\rho e^a_\mu=\dd x^\rho\partial_\rho e^a_\mu+\dd x^\rho\omega_{\rho b}^ae^b_\mu-\dd x^\rho e^a_\nu\Gamma^\nu_{\rho\mu}\overset{?}{=}0\\
\partial_\rho e^a_\mu+\omega_{\rho b}^ae^b_\mu-e^a_\nu\Gamma^\nu_{\rho\mu}\overset{?}{=}0\\
\partial_\rho e^a_\mu+(e^a_\sigma\Gamma^\sigma_{\rho\nu}e^\nu_b+e^a_\nu\partial_\rho e^\nu_b)e^b_\mu-e^a_\nu\Gamma^\nu_{\rho\mu}\overset{?}{=}0\\
\partial_\rho e^a_\mu+e^a_\sigma\Gamma^\sigma_{\rho\mu}+e^a_\nu\partial_\rho e^\nu_be^b_\mu-e^a_\nu\Gamma^\nu_{\rho\mu}\overset{?}{=}0\\
\partial_\rho e^a_\mu+e^a_\nu\partial_\rho e^\nu_be^b_\mu\overset{?}{=}0
\end{gather*}
which is an identity because $e^a_\sigma\partial_\rho e^\sigma_b=-\partial_\rho e^a_\sigma e^\sigma_b$. The vierbein is hence always covariantly constant.
Let's consider the covariant derivative of the metric:
\[\nabla g_{\mu\nu}=\dd g_{\mu\nu}-g_{\rho\nu}\Gamma^\rho{}_\mu-g_{\mu\rho}\Gamma^\rho{}_\nu,\]
or, in components,
\[\nabla_\rho g_{\mu\nu}=\partial_\rho g_{\mu\nu}-g_{\sigma\nu}\Gamma^\sigma_{\rho\mu}-g_{\mu\sigma}\Gamma^\sigma_{\rho\nu}.\]
Recall that if $T=0$, which means $\Gamma_{\mu\nu}^\rho=\Gamma_{\nu\mu}^\rho$, and $\nabla_\rho g_{\mu\nu}=0$ then the connection is a function of the metric only, $\Gamma^\rho_{\mu\nu}=\Gamma^\rho_{\mu\nu}(g)$, which implies that the spin connection is a function of the vierbein,
\[\omega_{\mu b}^a=e^a_\rho\Gamma^\rho_{\mu\nu}(g)e^\nu_b+e^a_\nu\partial_\mu e^\nu_b=\omega_{\mu b}^a(e),\]
because $g_{\mu\nu}$ is a function of the vierbein via $g_{\mu\nu}=e^a_\mu\eta_{ab}e^b_\nu$.
\cref{eqn:nablavierbein} has been derived without using the specific properties of the vierbein, which is that $e^a$ diagonalize the metric. If we apply it to $\delta^\mu_\nu$ (coefficients of $\dd x^\mu=\delta^\mu_\nu\dd x^\nu$), we correctly find
\[\nabla\delta^\nu_\mu=\dd\delta^\nu_\mu+\Gamma^\nu{}_\rho\delta^\rho_\mu-\delta^\nu_\rho\Gamma^\rho{}_\mu=0,\]
because $\delta^\nu_\mu$ is an invariant tensor.
We can check the torsionless condition in the basis $\dd x^\mu$ by applying the general covariant derivative rule:
\[T^\mu=\nabla\dd x^\mu=\dd\dd x^\mu+\Gamma^\mu{}_\nu\dd x^\nu=\Gamma^\mu{}_\nu\dd x^\nu=0.\]
Recall that $\Gamma^\mu{}_\nu\dd x^\nu=\dd x^\rho\dd x^\nu\Gamma^\mu_{\rho\nu}$ is a two form, so it is zero if and only if $\Gamma^\mu_{[\rho\nu]}=0$.
Alternatively, we can write
\[T^a=\nabla e^a=\nabla(e^a_\mu\dd x^\mu)=(\nabla e^a_\mu)\dd x^\mu+e^a_\mu(\nabla\dd x^\mu)=e^a_\mu(\nabla\dd x^\mu)=e^a_\mu\nabla\dd x^\mu,\]
where we used \cref{eqn:nablavierbein}, which again tells that the torsion is zero in one basis if and only if it is zero in another one: $\nabla e^a=0\iff\nabla\dd x^\mu=0$.
Let's see how the Bianchi identities look like in coordinates.
\begin{itemize}
\item 2\ap{nd} Bianchi identity: $\nabla R=0$, or, restoring indices, $\nabla R^a{}_b=0$. Recall that $R^a{}_b=R^a{}_{bcd}\frac{e^c\wedge e^d}{2}=R^a{}_{b\mu\nu}\frac{\dd x^\mu\wedge\dd x^\nu}{2}$ is a 2-form. We now know that to switch from one to the other we have to multiply by the vierbein, which commutes with $\nabla$, because it is covariantly constant. So, the Bianchi identity can be written as
\[0=\nabla\biggl(R^a{}_{bcd}\frac{e^ce^d}{2}\biggr)=(\nabla R^a{}_{bcd})\frac{e^ce^d}{2},\]
where we used the torsionless condition $T=\nabla e=0$. Since $\nabla R^a{}_{bcd}$ is a 1-form, it can be expanded in a basis, for example $e^f$: $0=e^f\nabla_fR^a{}_{bcd}\frac{e^ce^d}{2}$. This 3-form is zero if and only if
\begin{equation}
\nabla_c R^a{}_{bde}+\nabla_eR^a{}_{bcd}+\nabla_dR^a{}_{bec}=0.
\label{eqn:secondbianchi}
\end{equation}
The same result is valid in spacetime indices, thanks to the covariant constance of the vierbein.
\item Contracted Bianchi identities (under the metric compatibility assumption $\nabla\eta_{ab}=0$, equivalently in any basis). Recall that the Ricci tensor is defined as $R_{bd}=R^a{}_{bcd}\delta^c_a$. Contracting $a$ and $d$ in \cref{eqn:secondbianchi},
\[\nabla_cR_{be}-\nabla_eR_{bc}+\nabla_aR^a{}_{bec}=0.\]
Now multiplying by $\eta^{be}$ and using the metric compatibility condition (let's use the notation $\text{\emph{Ric}}$ for the Ricci tensor, to avoid confusion with the Riemann 2-form when an index is raised),
\[\nabla_cR-\nabla_b\text{\emph{Ric}}^b{}_c-\nabla_a\text{\emph{Ric}}^a{}_c=0\]
(where we used the symmetry properties coming from \cref{riemannsymmetries}), or
\[\nabla_a\text{\emph{Ric}}^a{}_b=\frac{1}{2}\nabla_bR\qquad(\text{usually written as } \nabla_\mu R^\mu{}_\nu=\frac{1}{2}\nabla_\nu R).\]
\end{itemize}
\chapter{General Relativity}
\section{Scalar field}
A scalar field $\varphi$ is a function $\varphi\colon M\to\mathbb R$, thus it transforms as $\varphi'(x')=\varphi(x)$ under a change of coordinates. Its covariant derivative is just the partial derivative, in fact
\[\dd x^\mu\nabla_\mu\varphi=\nabla\varphi=\dd\varphi=\dd x^\mu\partial_\mu\varphi\implies\nabla_\mu\varphi=\partial_\mu\varphi.\]
A possible action that couples $\varphi$ to gravity is
\begin{equation}
S=\int_M\dd^4x\sqrt{-g}\,\mathcal L(x)=\frac{1}{2}\int_M\dd^4x\sqrt{-g}\Bigl[g^{\mu\nu}\nabla_\mu\varphi\nabla_\nu\varphi+\xi R\varphi^2-m^2\varphi^2\Bigr].
\label{eqn:actioncurvedscalar}
\end{equation}
In flat space, where $g_{\mu\nu}(x)=\eta_{\mu\nu}$, $g=\det g_{\mu\nu}=-1$ and $R=0$, \cref{eqn:actioncurvedscalar} reduces to the usual
\begin{equation}
S=\frac{1}{2}\int_M\dd^4x\Bigr[\partial_\mu\varphi\partial^\mu\varphi-m^2\varphi^2\Bigr].
\label{eqn:actionflatscalar}
\end{equation}
We have thus obtained \cref{eqn:actioncurvedscalar} by ``covariantizing'' \cref{eqn:actionflatscalar} (which means making it invariant under a general change of coordinates: $\partial_\mu\to\nabla_\mu$ and $\dd^4x\to\dd^4x\sqrt{-g}$) and adding a non-minimal term, the one of lowest dimension between the infinitely many possible.
The integral on the manifold $\int_M$ is meant to be split and carried out separately in every chart. The integrand is built in a way such that the final result does not depend on the splitting chosen. In fact, under a change of coordinates, both $\mathcal L'(x')=\mathcal L(x)$ and $\dd^4x'\sqrt{-g'(x')}=\dd^4x\sqrt{-g(x)}$.
In principle, infinitely many other terms can be added:
\[R^{\mu\nu}\nabla_\mu\varphi\nabla_\nu\varphi,\quad (g^{\mu\nu}\nabla_\mu\varphi\nabla_\nu\varphi)^2,\quad\ldots\]
In the end, the correct action will be determined by the physics.
\section{Gauge field}
From the 4-potential $A_\mu$ (embedded in a 1-form $A=A_\mu\dd x^\mu$) we can define the field strength $F=F_{\mu\nu}\frac{\dd x^\mu\dd x^\nu}{2}=\partial_\mu A_\nu\dd x^\mu\dd x^\nu\implies F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu$. We know how differential forms transform, so: