-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec3.h
175 lines (143 loc) · 3.44 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#pragma once
#include <cmath>
#include <iostream>
#include "common.h"
using std::sqrt;
class vec3
{
public:
double e[3];
vec3() : e{ 0,0,0 } {}
vec3(double e0, double e1, double e2) : e{ e0, e1, e2 } {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator+=(const vec3& v)
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(double t)
{
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3 operator*(vec3& v)
{
return vec3(e[0] * v.x(), e[1] * v.y(), e[2] * v.z());
}
vec3& operator/=(double t)
{
return *this *= 1 / t;
}
double lenght() const
{
return sqrt(length_squared());
}
double length_squared() const
{
return e[0] * e[0] + e[1] * e[1] + e[2] * e[2];
}
bool near_zero() const
{
// Return true if the vector is close to zero in all dimensions
double s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
static vec3 random()
{
return vec3(random_double(), random_double(), random_double());
}
static vec3 random(double min, double max)
{
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
using point3 = vec3;
// Utility Functions
friend inline std::ostream& operator<<(std::ostream& out, const vec3& v)
{
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
friend inline vec3 operator+(const vec3& u, const vec3& v)
{
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
friend inline vec3 operator-(const vec3& u, const vec3& v)
{
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
friend inline vec3 operator*(double t, const vec3& v)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
friend inline vec3 operator*(const vec3& v, double t)
{
return t * v;
}
friend inline vec3 operator/(const vec3 v, double t)
{
return (1 / t) * v;
}
friend inline double dot(const vec3& u, const vec3& v)
{
return u.e[0] * v.e[0] + u.e[1] * v.e[1] + u.e[2] * v.e[2];
}
static vec3 cross(const vec3& u, const vec3& v)
{
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
static vec3 unit_vector(vec3 v)
{
return v / v.lenght();
}
static vec3 random_in_unit_sphere()
{
while (true)
{
vec3 p = random(-1, 1);
if (p.length_squared() < 1)
return p;
}
}
static vec3 random_unit_vector()
{
return unit_vector(random(-1, 1));
}
static vec3 random_in_unit_disk()
{
while (true)
{
vec3 p = vec3(random_double(-1, 1), random_double(-1, 1), 0);
if (p.length_squared() < 1)
return p;
}
}
static vec3 random_on_hemisphere(const vec3& normal)
{
vec3 on_unit_sphere = random_unit_vector();
if (dot(on_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return on_unit_sphere;
else
return -on_unit_sphere;
}
static vec3 reflect(const vec3& v, const vec3& n)
{
return v - 2 * dot(v, n) * n;
}
static vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat)
{
double cos_theta = fmin(dot(-uv, n), 1.0);
vec3 r_out_perp = etai_over_etat * (uv + cos_theta * n);
vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
};