A Image Super-Resolution Codebase which implements all sota approaches.
Public Datasets:
|- DIV2K
|- Flicker2K
|- DIV8K
|- Set5
We use the PEP8 style and we should add docstring to every new function.
. ├── data │ └── init.py ├── log │ └── init.py ├── metrics │ └── init.py ├── model │ └── init.py ├── README.md ├── requirements.txt ├── tools │ ├── demo.py │ ├── test.py │ └── train.py └── utils └── init.py
Name | Summary | Paper | Code |
---|---|---|---|
2015 | |||
SRCNN | Image Super-Resolution Using Deep Convolutional Networks | [arXiv] | [ |
2016 | |||
SRGAN | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network | [arXiv] | [ |
FSRGAN | Accelerating the Super-Resolution Convolutional Neural Network | [arXiv] | [ |
EnhanceNet | Single Image Super-Resolution Through Automated Texture Synthesis | [arXiv] | [ |
2017 | |||
LapSRN | Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution | [arXiv] | [ |
EDSR | Enhanced Deep Residual Networks for Single Image Super-Resolution | [arXiv] | [ |
2018 |