diff --git a/README.md b/README.md
index 9af59966..bd8b0623 100644
--- a/README.md
+++ b/README.md
@@ -6,7 +6,7 @@
-[**English**](./README.md) **|**
+[**English**](./README.md) **|**
[**简体中文**](./README_CN.md)
@@ -25,15 +25,15 @@
-🎉 [**Getting Started**](./tutorial/getting_started.md) **|**
+🎉 [**Getting Started**](./tutorial/getting_started.md) **|**
💡 [**Overall Design**](./tutorial/overall_design.md)
-📦 [**Dataset**](./tutorial/dataset_design.md) **|**
-🛠️ [**Scaler**](./tutorial/scaler_design.md) **|**
-🧠 [**Model**](./tutorial/model_design.md) **|**
-📉 [**Metrics**](./tutorial/metrics_design.md) **|**
-🏃♂️ [**Runner**](./tutorial/runner_design.md) **|**
-📜 [**Config**](./tutorial/config_design.md.md) **|**
+📦 [**Dataset**](./tutorial/dataset_design.md) **|**
+🛠️ [**Scaler**](./tutorial/scaler_design.md) **|**
+🧠 [**Model**](./tutorial/model_design.md) **|**
+📉 [**Metrics**](./tutorial/metrics_design.md) **|**
+🏃♂️ [**Runner**](./tutorial/runner_design.md) **|**
+📜 [**Config**](./tutorial/config_design.md.md) **|**
📜 [**Baselines**](./baselines/)
@@ -48,9 +48,9 @@ On the other hand, BasicTS offers a **user-friendly and easily extensible** inte
You can find detailed tutorials in [Getting Started](./tutorial/getting_started.md). Additionally, we are collecting **ToDo** and **HowTo** items. If you need more features (e.g., additional datasets or benchmark models) or tutorials, feel free to open an issue or leave a comment [here](https://github.com/zezhishao/BasicTS/issues/95).
-
-> [!IMPORTANT]
+> [!IMPORTANT]
> If you find this repository helpful for your work, please consider citing the following benchmarking paper:
+>
> ```LaTeX
> @article{shao2023exploring,
> title={Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis},
@@ -58,10 +58,10 @@ You can find detailed tutorials in [Getting Started](./tutorial/getting_started.
> journal={arXiv preprint arXiv:2310.06119},
> year={2023}
> }
-> ```
+> ```
+>
> 🔥🔥🔥 ***The paper has been accepted by IEEE TKDE! You can check it out [here](https://arxiv.org/abs/2310.06119).*** 🔥🔥🔥
-
## ✨ Highlighted Features
### Fair Performance Review
@@ -105,83 +105,81 @@ The code links (💻Code) in the table below point to the official implementatio
-[**English**](./README.md) **|**
+[**English**](./README.md) **|**
[**简体中文**](./README_CN.md)
-
---
@@ -26,16 +25,16 @@
-🎉 [**快速上手**](./tutorial/getting_started_cn.md) **|**
+🎉 [**快速上手**](./tutorial/getting_started_cn.md) **|**
💡 [**总体设计**](./tutorial/overall_design_cn.md)
-📦 [**数据集 (Dataset)**](./tutorial/dataset_design_cn.md) **|**
-🛠️ [**数据缩放 (Scaler)**](./tutorial/scaler_design_cn.md) **|**
-🧠 [**模型约定 (Model)**](./tutorial/model_design_cn.md) **|**
+📦 [**数据集 (Dataset)**](./tutorial/dataset_design_cn.md) **|**
+🛠️ [**数据缩放 (Scaler)**](./tutorial/scaler_design_cn.md) **|**
+🧠 [**模型约定 (Model)**](./tutorial/model_design_cn.md) **|**
📉 [**评估指标 (Metrics)**](./tutorial/metrics_design_cn.md)
-🏃♂️ [**执行器 (Runner)**](./tutorial/runner_design_cn.md) **|**
-📜 [**配置文件 (Config)**](./tutorial/config_design_cn.md) **|**
+🏃♂️ [**执行器 (Runner)**](./tutorial/runner_design_cn.md) **|**
+📜 [**配置文件 (Config)**](./tutorial/config_design_cn.md) **|**
📜 [**基线模型 (Baselines)**](./baselines/)
@@ -50,8 +49,9 @@ BasicTS 一方面通过 **统一且标准化的流程**,为热门的深度学
你可以在[快速上手](./tutorial/getting_started_cn.md)找到详细的教程。另外,我们正在收集 **ToDo** 和 **HowTo**,如果您需要更多功能(例如:更多数据集或基准模型)或教程,欢迎提出 issue 或在[此处](https://github.com/zezhishao/BasicTS/issues/95)留言。
-> [!IMPORTANT]
+> [!IMPORTANT]
> 如果本项目对您有用,请考虑引用下面的论文:
+>
> ```LaTeX
> @article{shao2023exploring,
> title={Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis},
@@ -59,7 +59,8 @@ BasicTS 一方面通过 **统一且标准化的流程**,为热门的深度学
> journal={arXiv preprint arXiv:2310.06119},
> year={2023}
> }
-> ```
+> ```
+>
> 🔥🔥🔥 ***该论文已被IEEE TKDE录用!你可以在这里[查看论文](https://arxiv.org/abs/2310.06119)。*** 🔥🔥🔥
## ✨ 主要功能亮点
@@ -105,83 +106,81 @@ BasicTS 实现了丰富的基线模型,包括经典模型、时空预测模型
时空预测
+| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
+| :--------- | :------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---------- | :----- |
+| BigST | Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks | [Link](https://dl.acm.org/doi/10.14778/3641204.3641217) | [Link](https://github.com/usail-hkust/BigST?tab=readme-ov-file) | VLDB'24 | STF |
+| STDMAE | Spatio-Temporal-Decoupled Masked Pre-training for Traffic Forecasting | [Link](https://arxiv.org/abs/2312.00516) | [Link](https://github.com/Jimmy-7664/STD-MAE) | IJCAI'24 | STF |
+| STWave | When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks | [Link](https://ieeexplore.ieee.org/document/10184591) | [Link](https://github.com/LMissher/STWave) | ICDE'23 | STF |
+| STAEformer | Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting | [Link](https://arxiv.org/abs/2308.10425) | [Link](https://github.com/XDZhelheim/STAEformer) | CIKM'23 | STF |
+| MegaCRN | Spatio-Temporal Meta-Graph Learning for Traffic Forecasting | [Link](https://aps.arxiv.org/abs/2212.05989) | [Link](https://github.com/deepkashiwa20/MegaCRN) | AAAI'23 | STF |
+| DGCRN | Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution | [Link](https://arxiv.org/abs/2104.14917) | [Link](https://github.com/tsinghua-fib-lab/Traffic-Benchmark) | ACM TKDD'23 | STF |
+| STID | Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2208.05233) | [Link](https://github.com/zezhishao/STID) | CIKM'22 | STF |
+| STEP | Pretraining Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2206.09113) | [Link](https://github.com/GestaltCogTeam/STEP?tab=readme-ov-file) | SIGKDD'22 | STF |
+| D2STGNN | Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting | [Link](https://arxiv.org/abs/2206.09112) | [Link](https://github.com/zezhishao/D2STGNN) | VLDB'22 | STF |
+| STNorm | Spatial and Temporal Normalization for Multi-variate Time Series Forecasting | [Link](https://dl.acm.org/doi/10.1145/3447548.3467330) | [Link](https://github.com/JLDeng/ST-Norm/blob/master/models/Wavenet.py) | SIGKDD'21 | STF |
+| STGODE | Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting | [Link](https://arxiv.org/abs/2106.12931) | [Link](https://github.com/square-coder/STGODE) | SIGKDD'21 | STF |
+| GTS | Discrete Graph Structure Learning for Forecasting Multiple Time Series | [Link](https://arxiv.org/abs/2101.06861) | [Link](https://github.com/chaoshangcs/GTS) | ICLR'21 | STF |
+| StemGNN | Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting | [Link](https://arxiv.org/abs/2103.07719) | [Link](https://github.com/microsoft/StemGNN) | NeurIPS'20 | STF |
+| MTGNN | Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks | [Link](https://arxiv.org/abs/2005.11650) | [Link](https://github.com/nnzhan/MTGNN) | SIGKDD'20 | STF |
+| AGCRN | Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting | [Link](https://arxiv.org/abs/2007.02842) | [Link](https://github.com/LeiBAI/AGCRN) | NeurIPS'20 | STF |
+| GWNet | Graph WaveNet for Deep Spatial-Temporal Graph Modeling | [Link](https://arxiv.org/abs/1906.00121) | [Link](https://github.com/nnzhan/Graph-WaveNet/blob/master/model.py) | IJCAI'19 | STF |
+| STGCN | Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting | [Link](https://arxiv.org/abs/1709.04875) | [Link](https://github.com/VeritasYin/STGCN_IJCAI-18) | IJCAI'18 | STF |
+| DCRNN | Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting | [Link](https://arxiv.org/abs/1707.01926) | [Link1](https://github.com/chnsh/DCRNN_PyTorch/blob/pytorch_scratch/model/pytorch/dcrnn_cell.py), [Link2](https://github.com/chnsh/DCRNN_PyTorch/blob/pytorch_scratch/model/pytorch/dcrnn_model.py) | ICLR'18 | STF |
-| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
-|:-------------|:---------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|:---------|
-| BigST | Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks | [Link](https://dl.acm.org/doi/10.14778/3641204.3641217) | [Link](https://github.com/usail-hkust/BigST?tab=readme-ov-file) | VLDB'24 | STF |
-| STDMAE | Spatio-Temporal-Decoupled Masked Pre-training for Traffic Forecasting | [Link](https://arxiv.org/abs/2312.00516) | [Link](https://github.com/Jimmy-7664/STD-MAE) | IJCAI'24 | STF |
-| STWave | When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks | [Link](https://ieeexplore.ieee.org/document/10184591) | [Link](https://github.com/LMissher/STWave) | ICDE'23 | STF |
-| STAEformer | Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting | [Link](https://arxiv.org/abs/2308.10425) | [Link](https://github.com/XDZhelheim/STAEformer) | CIKM'23 | STF |
-| MegaCRN | Spatio-Temporal Meta-Graph Learning for Traffic Forecasting | [Link](https://aps.arxiv.org/abs/2212.05989) | [Link](https://github.com/deepkashiwa20/MegaCRN) | AAAI'23 | STF |
-| DGCRN | Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution | [Link](https://arxiv.org/abs/2104.14917) | [Link](https://github.com/tsinghua-fib-lab/Traffic-Benchmark) | ACM TKDD'23 | STF |
-| STID | Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2208.05233) | [Link](https://github.com/zezhishao/STID) | CIKM'22 | STF |
-| STEP | Pretraining Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2206.09113) | [Link](https://github.com/GestaltCogTeam/STEP?tab=readme-ov-file) | SIGKDD'22 | STF |
-| D2STGNN | Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting | [Link](https://arxiv.org/abs/2206.09112) | [Link](https://github.com/zezhishao/D2STGNN) | VLDB'22 | STF |
-| STNorm | Spatial and Temporal Normalization for Multi-variate Time Series Forecasting | [Link](https://dl.acm.org/doi/10.1145/3447548.3467330) | [Link](https://github.com/JLDeng/ST-Norm/blob/master/models/Wavenet.py) | SIGKDD'21 | STF |
-| STGODE | Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting | [Link](https://arxiv.org/abs/2106.12931) | [Link](https://github.com/square-coder/STGODE) | SIGKDD'21 | STF |
-| GTS | Discrete Graph Structure Learning for Forecasting Multiple Time Series | [Link](https://arxiv.org/abs/2101.06861) | [Link](https://github.com/chaoshangcs/GTS) | ICLR'21 | STF |
-| StemGNN | Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting | [Link](https://arxiv.org/abs/2103.07719) | [Link](https://github.com/microsoft/StemGNN) | NeurIPS'20 | STF |
-| MTGNN | Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks | [Link](https://arxiv.org/abs/2005.11650) | [Link](https://github.com/nnzhan/MTGNN) | SIGKDD'20 | STF |
-| AGCRN | Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting | [Link](https://arxiv.org/abs/2007.02842) | [Link](https://github.com/LeiBAI/AGCRN) | NeurIPS'20 | STF |
-| GWNet | Graph WaveNet for Deep Spatial-Temporal Graph Modeling | [Link](https://arxiv.org/abs/1906.00121) | [Link](https://github.com/nnzhan/Graph-WaveNet/blob/master/model.py) | IJCAI'19 | STF |
-| STGCN | Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting | [Link](https://arxiv.org/abs/1709.04875) | [Link](https://github.com/VeritasYin/STGCN_IJCAI-18) | IJCAI'18 | STF |
-| DCRNN | Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting | [Link](https://arxiv.org/abs/1707.01926) | [Link1](https://github.com/chnsh/DCRNN_PyTorch/blob/pytorch_scratch/model/pytorch/dcrnn_cell.py), [Link2](https://github.com/chnsh/DCRNN_PyTorch/blob/pytorch_scratch/model/pytorch/dcrnn_model.py) | ICLR'18 | STF |
Long-Term Time Series Forecasting
+| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
+| :------------ | :------------------------------------------------------------------------------------------------------- | :----------------------------------------------------- | :---------------------------------------------------------------------------- | :--------- | :----- |
+| CATS | Are Self-Attentions Effective for Time Series Forecasting? | [Link](https://arxiv.org/pdf/2405.16877) | [Link](https://github.com/dongbeank/CATS) | NeurIPS'24 | LTSF |
+| Sumba | Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics | [Link](https://xiucheng.org/assets/pdfs/nips24-sumba.pdf) | [Link](https://github.com/chenxiaodanhit/Sumba/) | NeurIPS'24 | LTSF |
+| GLAFF | Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective | [Link](https://arxiv.org/pdf/2409.18696) | [Link](https://github.com/ForestsKing/GLAFF) | NeurIPS'24 | LTSF |
+| CycleNet | CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns Forecasting | [Link](https://arxiv.org/pdf/2409.18479) | [Link](https://github.com/ACAT-SCUT/CycleNet) | NeurIPS'24 | LTSF |
+| Fredformer | Fredformer: Frequency Debiased Transformer for Time Series Forecasting | [Link](https://arxiv.org/pdf/2406.09009) | [Link](https://github.com/chenzRG/Fredformer) | KDD'24 | LTSF |
+| UMixer | An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting | [Link](https://arxiv.org/abs/2401.02236) | [Link](https://github.com/XiangMa-Shaun/U-Mixer) | AAAI'24 | LTSF |
+| TimeMixer | Decomposable Multiscale Mixing for Time Series Forecasting | [Link](https://arxiv.org/html/2405.14616v1) | [Link](https://github.com/kwuking/TimeMixer) | ICLR'24 | LTSF |
+| Time-LLM | Time-LLM: Time Series Forecasting by Reprogramming Large Language Models | [Link](https://arxiv.org/abs/2310.01728) | [Link](https://github.com/KimMeen/Time-LLM) | ICLR'24 | LTSF |
+| SparseTSF | Modeling LTSF with 1k Parameters | [Link](https://arxiv.org/abs/2405.00946) | [Link](https://github.com/lss-1138/SparseTSF) | ICML'24 | LTSF |
+| iTrainsformer | Inverted Transformers Are Effective for Time Series Forecasting | [Link](https://arxiv.org/abs/2310.06625) | [Link](https://github.com/thuml/iTransformer) | ICLR'24 | LTSF |
+| Koopa | Learning Non-stationary Time Series Dynamics with Koopman Predictors | [Link](https://arxiv.org/abs/2305.18803) | [Link](https://github.com/thuml/Koopa) | NeurIPS'24 | LTSF |
+| CrossGNN | CrossGNN: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement | [Link](https://openreview.net/pdf?id=xOzlW2vUYc) | [Link](https://github.com/hqh0728/CrossGNN) | NeurIPS'23 | LTSF |
+| NLinear | Are Transformers Effective for Time Series Forecasting? | [Link](https://arxiv.org/abs/2205.13504) | [Link](https://github.com/cure-lab/DLinear) | AAAI'23 | LTSF |
+| Crossformer | Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting | [Link](https://openreview.net/forum?id=vSVLM2j9eie) | [Link](https://github.com/Thinklab-SJTU/Crossformer) | ICLR'23 | LTSF |
+| DLinear | Are Transformers Effective for Time Series Forecasting? | [Link](https://arxiv.org/abs/2205.13504) | [Link](https://github.com/cure-lab/DLinear) | AAAI'23 | LTSF |
+| DSformer | A Double Sampling Transformer for Multivariate Time Series Long-term Prediction | [Link](https://arxiv.org/abs/2308.03274) | [Link](https://github.com/ChengqingYu/DSformer) | CIKM'23 | LTSF |
+| SegRNN | Segment Recurrent Neural Network for Long-Term Time Series Forecasting | [Link](https://arxiv.org/abs/2308.11200) | [Link](https://github.com/lss-1138/SegRNN) | arXiv | LTSF |
+| MTS-Mixers | Multivariate Time Series Forecasting via Factorized Temporal and Channel Mixing | [Link](https://arxiv.org/abs/2302.04501) | [Link](https://github.com/plumprc/MTS-Mixers) | arXiv | LTSF |
+| LightTS | Fast Multivariate Time Series Forecasting with Light Sampling-oriented MLP | [Link](https://arxiv.org/abs/2207.01186) | [Link](https://github.com/thuml/Time-Series-Library/blob/main/models/LightTS.py) | arXiv | LTSF |
+| ETSformer | Exponential Smoothing Transformers for Time-series Forecasting | [Link](https://arxiv.org/abs/2202.01381) | [Link](https://github.com/salesforce/ETSformer) | arXiv | LTSF |
+| NHiTS | Neural Hierarchical Interpolation for Time Series Forecasting | [Link](https://arxiv.org/abs/2201.12886) | [Link](https://github.com/cchallu/n-hits) | AAAI'23 | LTSF |
+| PatchTST | A Time Series is Worth 64 Words: Long-term Forecasting with Transformers | [Link](https://arxiv.org/abs/2211.14730) | [Link](https://github.com/yuqinie98/PatchTST) | ICLR'23 | LTSF |
+| TiDE | Long-term Forecasting with TiDE: Time-series Dense Encoder | [Link](https://arxiv.org/abs/2304.08424) | [Link](https://github.com/lich99/TiDE) | TMLR'23 | LTSF |
+| TimesNet | Temporal 2D-Variation Modeling for General Time Series Analysis | [Link](https://openreview.net/pdf?id=ju_Uqw384Oq) | [Link](https://github.com/thuml/TimesNet) | ICLR'23 | LTSF |
+| Triformer | Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2204.13767) | [Link](https://github.com/razvanc92/triformer) | IJCAI'22 | LTSF |
+| NSformer | Exploring the Stationarity in Time Series Forecasting | [Link](https://arxiv.org/abs/2205.14415) | [Link](https://github.com/thuml/Nonstationary_Transformers) | NeurIPS'22 | LTSF |
+| FiLM | Frequency improved Legendre Memory Model for LTSF | [Link](https://arxiv.org/abs/2205.08897) | [Link](https://github.com/tianzhou2011/FiLM) | NeurIPS'22 | LTSF |
+| FEDformer | Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting | [Link](https://arxiv.org/abs/2201.12740v3) | [Link](https://github.com/MAZiqing/FEDformer) | ICML'22 | LTSF |
+| Pyraformer | Low complexity pyramidal Attention For Long-range Time Series Modeling and Forecasting | [Link](https://openreview.net/forum?id=0EXmFzUn5I) | [Link](https://github.com/ant-research/Pyraformer) | ICLR'22 | LTSF |
+| HI | Historical Inertia: A Powerful Baseline for Long Sequence Time-series Forecasting | [Link](https://arxiv.org/abs/2103.16349) | None | CIKM'21 | LTSF |
+| Autoformer | Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting | [Link](https://arxiv.org/abs/2106.13008) | [Link](https://github.com/thuml/Autoformer) | NeurIPS'21 | LTSF |
+| Informer | Beyond Efficient Transformer for Long Sequence Time-Series Forecasting | [Link](https://arxiv.org/abs/2012.07436) | [Link](https://github.com/zhouhaoyi/Informer2020) | AAAI'21 | LTSF |
-| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
-|:--------------|:------------------------------------------------------------------------------------------------|:----------------------------------------------------|:---------------------------------------------------------------------------------|:-----------|:---------|
-| CATS | Are Self-Attentions Effective for Time Series Forecasting? | [Link]( https://arxiv.org/pdf/2405.16877) | [Link](https://github.com/dongbeank/CATS) | NeurIPS'24 | LTSF |
-| Sumba | Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics | [Link]( https://xiucheng.org/assets/pdfs/nips24-sumba.pdf) | [Link](https://github.com/chenxiaodanhit/Sumba/) | NeurIPS'24 | LTSF |
-| GLAFF | Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective | [Link]( https://arxiv.org/pdf/2409.18696) | [Link](https://github.com/ForestsKing/GLAFF) | NeurIPS'24 | LTSF |
-| CycleNet | CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns Forecasting | [Link]( https://arxiv.org/pdf/2409.18479) | [Link](https://github.com/ACAT-SCUT/CycleNet) | NeurIPS'24 | LTSF |
-| Fredformer | Fredformer: Frequency Debiased Transformer for Time Series Forecasting | [Link]( https://arxiv.org/pdf/2406.09009) | [Link](https://github.com/chenzRG/Fredformer) | KDD'24 | LTSF |
-| UMixer | An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting | [Link](https://arxiv.org/abs/2401.02236) | [Link](https://github.com/XiangMa-Shaun/U-Mixer) | AAAI'24 | LTSF |
-| TimeMixer | Decomposable Multiscale Mixing for Time Series Forecasting | [Link](https://arxiv.org/html/2405.14616v1) | [Link](https://github.com/kwuking/TimeMixer) | ICLR'24 | LTSF |
-| Time-LLM | Time-LLM: Time Series Forecasting by Reprogramming Large Language Models | [Link](https://arxiv.org/abs/2310.01728) | [Link](https://github.com/KimMeen/Time-LLM) | ICLR'24 | LTSF |
-| SparseTSF | Modeling LTSF with 1k Parameters | [Link](https://arxiv.org/abs/2405.00946) | [Link](https://github.com/lss-1138/SparseTSF) | ICML'24 | LTSF |
-| iTrainsformer | Inverted Transformers Are Effective for Time Series Forecasting | [Link](https://arxiv.org/abs/2310.06625) | [Link](https://github.com/thuml/iTransformer) | ICLR'24 | LTSF |
-| Koopa | Learning Non-stationary Time Series Dynamics with Koopman Predictors | [Link](https://arxiv.org/abs/2305.18803) | [Link](https://github.com/thuml/Koopa) | NeurIPS'24 | LTSF |
-| CrossGNN | CrossGNN: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement | [Link](https://openreview.net/pdf?id=xOzlW2vUYc) | [Link](https://github.com/hqh0728/CrossGNN) | NeurIPS'23 | LTSF |
-| NLinear | Are Transformers Effective for Time Series Forecasting? | [Link](https://arxiv.org/abs/2205.13504) | [Link](https://github.com/cure-lab/DLinear) | AAAI'23 | LTSF |
-| Crossformer | Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting | [Link](https://openreview.net/forum?id=vSVLM2j9eie) | [Link](https://github.com/Thinklab-SJTU/Crossformer) | ICLR'23 | LTSF |
-| DLinear | Are Transformers Effective for Time Series Forecasting? | [Link](https://arxiv.org/abs/2205.13504) | [Link](https://github.com/cure-lab/DLinear) | AAAI'23 | LTSF |
-| DSformer | A Double Sampling Transformer for Multivariate Time Series Long-term Prediction | [Link](https://arxiv.org/abs/2308.03274) | [Link](https://github.com/ChengqingYu/DSformer) | CIKM'23 | LTSF |
-| SegRNN | Segment Recurrent Neural Network for Long-Term Time Series Forecasting | [Link](https://arxiv.org/abs/2308.11200) | [Link](https://github.com/lss-1138/SegRNN) | arXiv | LTSF |
-| MTS-Mixers | Multivariate Time Series Forecasting via Factorized Temporal and Channel Mixing | [Link](https://arxiv.org/abs/2302.04501) | [Link](https://github.com/plumprc/MTS-Mixers) | arXiv | LTSF |
-| LightTS | Fast Multivariate Time Series Forecasting with Light Sampling-oriented MLP | [Link](https://arxiv.org/abs/2207.01186) | [Link](https://github.com/thuml/Time-Series-Library/blob/main/models/LightTS.py) | arXiv | LTSF |
-| ETSformer | Exponential Smoothing Transformers for Time-series Forecasting | [Link](https://arxiv.org/abs/2202.01381) | [Link](https://github.com/salesforce/ETSformer) | arXiv | LTSF |
-| NHiTS | Neural Hierarchical Interpolation for Time Series Forecasting | [Link](https://arxiv.org/abs/2201.12886) | [Link](https://github.com/cchallu/n-hits) | AAAI'23 | LTSF |
-| PatchTST | A Time Series is Worth 64 Words: Long-term Forecasting with Transformers | [Link](https://arxiv.org/abs/2211.14730) | [Link](https://github.com/yuqinie98/PatchTST) | ICLR'23 | LTSF |
-| TiDE | Long-term Forecasting with TiDE: Time-series Dense Encoder | [Link](https://arxiv.org/abs/2304.08424) | [Link](https://github.com/lich99/TiDE) | TMLR'23 | LTSF |
-| TimesNet | Temporal 2D-Variation Modeling for General Time Series Analysis | [Link](https://openreview.net/pdf?id=ju_Uqw384Oq) | [Link](https://github.com/thuml/TimesNet) | ICLR'23 | LTSF |
-| Triformer | Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2204.13767) | [Link](https://github.com/razvanc92/triformer) | IJCAI'22 | LTSF |
-| NSformer | Exploring the Stationarity in Time Series Forecasting | [Link](https://arxiv.org/abs/2205.14415) | [Link](https://github.com/thuml/Nonstationary_Transformers) | NeurIPS'22 | LTSF |
-| FiLM | Frequency improved Legendre Memory Model for LTSF | [Link](https://arxiv.org/abs/2205.08897) | [Link](https://github.com/tianzhou2011/FiLM) | NeurIPS'22 | LTSF |
-| FEDformer | Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting | [Link](https://arxiv.org/abs/2201.12740v3) | [Link](https://github.com/MAZiqing/FEDformer) | ICML'22 | LTSF |
-| Pyraformer | Low complexity pyramidal Attention For Long-range Time Series Modeling and Forecasting | [Link](https://openreview.net/forum?id=0EXmFzUn5I) | [Link](https://github.com/ant-research/Pyraformer) | ICLR'22 | LTSF |
-| HI | Historical Inertia: A Powerful Baseline for Long Sequence Time-series Forecasting | [Link](https://arxiv.org/abs/2103.16349) | None | CIKM'21 | LTSF |
-| Autoformer | Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting | [Link](https://arxiv.org/abs/2106.13008) | [Link](https://github.com/thuml/Autoformer) | NeurIPS'21 | LTSF |
-| Informer | Beyond Efficient Transformer for Long Sequence Time-Series Forecasting | [Link](https://arxiv.org/abs/2012.07436) | [Link](https://github.com/zhouhaoyi/Informer2020) | AAAI'21 | LTSF |
-
其他方法
+| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
+| :--------- | :------------------------------------------------------------------------ | :--------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------- | :------------------ | :------------------------------------ |
+| LightGBM | LightGBM: A Highly Efficient Gradient Boosting Decision Tree | [Link](https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf) | [Link](https://github.com/microsoft/LightGBM) | NeurIPS'17 | Machine Learning |
+| NBeats | Neural basis expansion analysis for interpretable time series forecasting | [Link](https://arxiv.org/abs/1905.10437) | [Link1](https://github.com/ServiceNow/N-BEATS), [Link2](https://github.com/philipperemy/n-beats) | ICLR'19 | Deep Time Series Forecasting |
+| DeepAR | Probabilistic Forecasting with Autoregressive Recurrent Networks | [Link](https://arxiv.org/abs/1704.04110) | [Link1](https://github.com/jingw2/demand_forecast), [Link2](https://github.com/husnejahan/DeepAR-pytorch), [Link3](https://github.com/arrigonialberto86/deepar) | Int. J. Forecast'20 | Probabilistic Time Series Forecasting |
+| WaveNet | WaveNet: A Generative Model for Raw Audio. | [Link](https://arxiv.org/abs/1609.03499) | [Link 1](https://github.com/JLDeng/ST-Norm/blob/master/models/Wavenet.py), [Link 2](https://github.com/huyouare/WaveNet-Theano) | arXiv | Audio |
-| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
-|:-------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------|:--------------------------------|
-| LightGBM | LightGBM: A Highly Efficient Gradient Boosting Decision Tree | [Link](https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf) | [Link](https://github.com/microsoft/LightGBM) | NeurIPS'17 | Machine Learning |
-| NBeats | Neural basis expansion analysis for interpretable time series forecasting | [Link](https://arxiv.org/abs/1905.10437) | [Link1](https://github.com/ServiceNow/N-BEATS), [Link2](https://github.com/philipperemy/n-beats) | ICLR'19 | Deep Time Series Forecasting |
-| DeepAR | Probabilistic Forecasting with Autoregressive Recurrent Networks | [Link](https://arxiv.org/abs/1704.04110) | [Link1](https://github.com/jingw2/demand_forecast), [Link2](https://github.com/husnejahan/DeepAR-pytorch), [Link3](https://github.com/arrigonialberto86/deepar) | Int. J. Forecast'20 | Probabilistic Time Series Forecasting |
-| WaveNet | WaveNet: A Generative Model for Raw Audio. | [Link](https://arxiv.org/abs/1609.03499) | [Link 1](https://github.com/JLDeng/ST-Norm/blob/master/models/Wavenet.py), [Link 2](https://github.com/huyouare/WaveNet-Theano) | arXiv | Audio |
-
## 📦 支持的数据集
BasicTS 支持多种类型的数据集,涵盖时空预测、长序列预测及大规模数据集。
@@ -189,42 +188,44 @@ BasicTS 支持多种类型的数据集,涵盖时空预测、长序列预测及
时空预测
-| 🏷️Name | 🌐Domain | 📏Length | 📊Time Series Count | 🔄Graph | ⏱️Freq. (m) | 🎯Task |
-|:---------|:--------------|-----------:|----------------------:|:--------------------|--------------------:|:---------|
-| METR-LA | Traffic Speed | 34272 | 207 | True | 5 | STF |
-| PEMS-BAY | Traffic Speed | 52116 | 325 | True | 5 | STF |
-| PEMS03 | Traffic Flow | 26208 | 358 | True | 5 | STF |
-| PEMS04 | Traffic Flow | 16992 | 307 | True | 5 | STF |
-| PEMS07 | Traffic Flow | 28224 | 883 | True | 5 | STF |
-| PEMS08 | Traffic Flow | 17856 | 170 | True | 5 | STF |
+| 🏷️Name | 🌐Domain | 📏Length | 📊Time Series Count | 🔄Graph | ⏱️Freq. (m) | 🎯Task |
+| :------- | :------------ | -------: | ------------------: | :------ | ------------: | :----- |
+| METR-LA | Traffic Speed | 34272 | 207 | True | 5 | STF |
+| PEMS-BAY | Traffic Speed | 52116 | 325 | True | 5 | STF |
+| PEMS03 | Traffic Flow | 26208 | 358 | True | 5 | STF |
+| PEMS04 | Traffic Flow | 16992 | 307 | True | 5 | STF |
+| PEMS07 | Traffic Flow | 28224 | 883 | True | 5 | STF |
+| PEMS08 | Traffic Flow | 17856 | 170 | True | 5 | STF |
+
长序列预测
-| 🏷️Name | 🌐Domain | 📏Length | 📊Time Series Count | 🔄Graph | ⏱️Freq. (m) | 🎯Task |
-|:------------------|:------------------------------------|-----------:|----------------------:|:--------------------|--------------------:|:---------|
-| BeijingAirQuality | Beijing Air Quality | 36000 | 7 | False | 60 | LTSF |
-| ETTh1 | Electricity Transformer Temperature | 14400 | 7 | False | 60 | LTSF |
-| ETTh2 | Electricity Transformer Temperature | 14400 | 7 | False | 60 | LTSF |
-| ETTm1 | Electricity Transformer Temperature | 57600 | 7 | False | 15 | LTSF |
-| ETTm2 | Electricity Transformer Temperature | 57600 | 7 | False | 15 | LTSF |
-| Electricity | Electricity Consumption | 26304 | 321 | False | 60 | LTSF |
-| ExchangeRate | Exchange Rate | 7588 | 8 | False | 1440 | LTSF |
-| Illness | Ilness Data | 966 | 7 | False | 10080 | LTSF |
-| Traffic | Road Occupancy Rates | 17544 | 862 | False | 60 | LTSF |
-| Weather | Weather | 52696 | 21 | False | 10 | LTSF |
+| 🏷️Name | 🌐Domain | 📏Length | 📊Time Series Count | 🔄Graph | ⏱️Freq. (m) | 🎯Task |
+| :---------------- | :---------------------------------- | -------: | ------------------: | :------ | ------------: | :----- |
+| BeijingAirQuality | Beijing Air Quality | 36000 | 7 | False | 60 | LTSF |
+| ETTh1 | Electricity Transformer Temperature | 14400 | 7 | False | 60 | LTSF |
+| ETTh2 | Electricity Transformer Temperature | 14400 | 7 | False | 60 | LTSF |
+| ETTm1 | Electricity Transformer Temperature | 57600 | 7 | False | 15 | LTSF |
+| ETTm2 | Electricity Transformer Temperature | 57600 | 7 | False | 15 | LTSF |
+| Electricity | Electricity Consumption | 26304 | 321 | False | 60 | LTSF |
+| ExchangeRate | Exchange Rate | 7588 | 8 | False | 1440 | LTSF |
+| Illness | Ilness Data | 966 | 7 | False | 10080 | LTSF |
+| Traffic | Road Occupancy Rates | 17544 | 862 | False | 60 | LTSF |
+| Weather | Weather | 52696 | 21 | False | 10 | LTSF |
+
大规模数据集
-| 🏷️Name | 🌐Domain | 📏Length | 📊Time Series Count | 🔄Graph | ⏱️Freq. (m) | 🎯Task |
-|:---------|:-------------|-----------:|----------------------:|:--------------------|--------------------:|:------------|
-| CA | Traffic Flow | 35040 | 8600 | True | 15 | Large Scale |
-| GBA | Traffic Flow | 35040 | 2352 | True | 15 | Large Scale |
-| GLA | Traffic Flow | 35040 | 3834 | True | 15 | Large Scale |
-| SD | Traffic Flow | 35040 | 716 | True | 15 | Large Scale |
+| 🏷️Name | 🌐Domain | 📏Length | 📊Time Series Count | 🔄Graph | ⏱️Freq. (m) | 🎯Task |
+| :------- | :----------- | -------: | ------------------: | :------ | ------------: | :---------- |
+| CA | Traffic Flow | 35040 | 8600 | True | 15 | Large Scale |
+| GBA | Traffic Flow | 35040 | 2352 | True | 15 | Large Scale |
+| GLA | Traffic Flow | 35040 | 3834 | True | 15 | Large Scale |
+| SD | Traffic Flow | 35040 | 716 | True | 15 | Large Scale |
@@ -237,8 +238,11 @@ BasicTS 支持多种类型的数据集,涵盖时空预测、长序列预测及
感谢这些优秀的贡献者们 ([表情符号指南](https://allcontributors.org/docs/en/emoji-key)):
+
+
+
@@ -263,16 +267,27 @@ BasicTS 支持多种类型的数据集,涵盖时空预测、长序列预测及
+
此项目遵循 [all-contributors](https://github.com/all-contributors/all-contributors) 规范。欢迎任何形式的贡献!
-## Star History
+## ⭐ Star History
[![Star History Chart](https://api.star-history.com/svg?repos=GestaltCogTeam/BasicTS&type=Date)](https://star-history.com/#GestaltCogTeam/BasicTS&Date)
## 🔗 致谢
BasicTS 是基于 [EasyTorch](https://github.com/cnstark/easytorch) 开发的,这是一个易于使用且功能强大的开源神经网络训练框架。
+
+## 📧 联系我们
+
+官方Discord Server:
+
+https://discord.gg/jkjGf9Hz
+
+官方微信群:
+
+![wechat](assets/BasicTS-wechat-cn.jpg)
diff --git a/assets/BasicTS-wechat-cn.jpg b/assets/BasicTS-wechat-cn.jpg
new file mode 100644
index 00000000..58768de7
Binary files /dev/null and b/assets/BasicTS-wechat-cn.jpg differ
diff --git a/assets/BasicTS-wechat-en.jpg b/assets/BasicTS-wechat-en.jpg
new file mode 100644
index 00000000..d7b0a407
Binary files /dev/null and b/assets/BasicTS-wechat-en.jpg differ