-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_base_model.py
139 lines (119 loc) · 5.62 KB
/
run_base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import copy
import os
import os.path as osp
import networkx as nx
import numpy as np
import scipy.sparse as sp
from sklearn.model_selection import ShuffleSplit
import matplotlib.pyplot as plt
from tqdm import tqdm
import argparse
from WebKB import *
import torch
from torch_geometric.utils.convert import to_networkx
from torch_geometric.datasets import Planetoid
from torch_geometric.datasets import WikipediaNetwork
import torch_geometric.transforms as T
import torch.optim as optim
from model import GAT, GATv2, GATv3
from FilmDataset import FilmDataset
from utils import data_split, experiment, get_embeddings, embedd_raw_data, load_new_dataset, edge_to_adj
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
path = r'data'
def load_data(dataset_name):
if dataset_name == 'Film':
dataset = FilmDataset('data/Film')
data = dataset.data
elif dataset_name == 'Chameleon':
pre_dataset = WikipediaNetwork(
root=path, name=dataset_name, geom_gcn_preprocess=True, transform=T.NormalizeFeatures())
dataset = WikipediaNetwork(
root=path, name=dataset_name, geom_gcn_preprocess=False, transform=T.NormalizeFeatures())
data = dataset[0]
data.y = pre_dataset[0].y
elif dataset_name == 'Squirrel':
pre_dataset = WikipediaNetwork(root=path, name='Squirrel', geom_gcn_preprocess=True,
transform=T.NormalizeFeatures())
dataset = WikipediaNetwork(root=path, name='Squirrel', geom_gcn_preprocess=False,
transform=T.NormalizeFeatures())
data = dataset[0]
data.y = pre_dataset[0].y
elif dataset_name == 'Cornell':
dataset = WebKB(path, dataset_name, transform=T.NormalizeFeatures())
data = dataset.data
data.edge_attr = None
elif dataset_name == 'Texas':
dataset = WebKB(path, dataset_name, transform=T.NormalizeFeatures())
data = dataset.data
data.edge_attr = None
elif dataset_name == 'Wisconsin':
dataset = WebKB(path, dataset_name, transform=T.NormalizeFeatures())
data = dataset.data
data.edge_attr = None
elif dataset_name == 'roman_empire':
data = load_new_dataset(dataset_name)
self_loop_mask = data.edge_index[0] != data.edge_index[1]
remove_self_loop = data.edge_index.t()[self_loop_mask]
data.edge_index = remove_self_loop.t()
data = data_split(data, args.train_per, args.val_per)
return data
def run(arg):
data = load_data(arg.name_data)
adj = edge_to_adj(data).to(device)
data.to(device)
if args.model_name == 'GAT':
model_type = GAT
elif args.model_name == 'GATv2':
model_type = GATv2
elif args.model_name == 'GATv3':
model_type = GATv3
adj_list = [None]
no_loop_mat = torch.eye(adj.shape[0]).to(device)
for ii in range(2):
no_loop_mat = torch.mm(adj, no_loop_mat)
adj_list.append(no_loop_mat)
test_acc_list = []
best_result_path = r'Weight/{}/{}_{}.pkl'.format(arg.name_data, arg.model_name, str(arg.hidden_unit))
for i in range(arg.num_experiment):
input_dim = data.num_node_features
output_dim = len(np.unique(data.y.cpu().detach().numpy()))
model = model_type(input_dim, arg.hidden_unit, output_dim, adj_list, adj).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=arg.lr, weight_decay=arg.weight_decay)
# optimizer_sett = [
# {'params': model.classifier.parameters(), 'weight_decay': arg.weight_decay, 'lr': arg.lr},
# {'params': model.fc1.parameters(), 'weight_decay': arg.weight_decay, 'lr': arg.lr},
# {'params': model.hop_select, 'weight_decay': arg.weight_decay, 'lr': arg.lr},
# {'params': model.Q.parameters(), 'weight_decay': arg.weight_decay / 4, 'lr': arg.lr},
# {'params': model.K.parameters(), 'weight_decay': arg.weight_decay / 4, 'lr': arg.lr},
# ]
# optimizer = optim.Adam(optimizer_sett)
best_model, test_acc = experiment(i, data, model, optimizer, arg)
test_acc_list.append(test_acc)
del model
if test_acc == min(test_acc_list):
torch.save(best_model, best_result_path)
log = 'Model_type: {}, hidden_unit:{}, is_saveModel: {}, Dateset_name: {}, Experiments: {:03d}, Acc: {:.1f}±{' \
':.1f}\n'
print(log.format(model_type, arg.hidden_unit, arg.is_saveModel, arg.name_data, arg.num_experiment,
np.mean(test_acc_list),
np.std(test_acc_list)))
with open('Log/result.txt', 'a+') as f:
log = log.format(model_type, arg.hidden_unit, arg.is_saveModel, arg.name_data, arg.num_experiment,
np.mean(test_acc_list), np.std(test_acc_list))
f.write(log)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--is_saveModel', type=bool, default=False)
parser.add_argument('--is_attention', type=bool, default=False)
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--lr', type=float, default=0.02)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--num_experiment', type=int, default=50)
parser.add_argument('--patience', type=int, default=100)
parser.add_argument('--model_name', type=str, default='GGAT')
parser.add_argument('--name_data', type=str, default='roman_empire')
parser.add_argument('--train_per', type=float, default=0.6)
parser.add_argument('--val_per', type=float, default=0.2)
parser.add_argument('--hidden_unit', type=int, default=64)
args = parser.parse_args()
run(args)