-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlaplace.py
318 lines (274 loc) · 11.1 KB
/
laplace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# -*- coding: utf-8 -*-
"""
Anaflow subpackage providing flow solutions in laplace space.
.. currentmodule:: anaflow.flow.laplace
The following functions are provided
.. autosummary::
grf_laplace
"""
# pylint: disable=C0103
import warnings
import numpy as np
from scipy.special import kv, iv, gamma, erfcx
from pentapy import solve
from anaflow.tools.special import sph_surf
__all__ = ["grf_laplace"]
def constant(s):
"""Constant pumping."""
return 1.0 / s
def periodic(s, a=0):
"""
Periodic pumping.
Q(t) = Q * cos(a * t)
"""
if np.isclose(a, 0):
return constant(s)
return 1.0 / (s + a ** 2 / s)
def slug(s):
"""Slug test."""
return np.ones_like(s)
def interval(s, a=np.inf):
"""Interval pumping in [0, t]."""
if np.isposinf(a):
return constant(s)
return (1.0 - np.exp(-s * a)) / s
def accruing(s, a=0):
"""Accruing pumping with time scale t."""
return erfcx((s * a) / 2.0) / s
PUMP_COND = {0: constant, 1: periodic, 2: slug, 3: interval, 4: accruing}
def grf_laplace(
s,
rad=None,
S_part=None,
K_part=None,
R_part=None,
dim=2,
lat_ext=1.0,
rate=None,
K_well=None,
cut_off_prec=1e-20,
cond=0,
cond_kw=None,
):
"""
The extended GRF-model for transient flow in Laplace-space.
The General Radial Flow (GRF) Model allowes fractured dimensions for
transient flow under a pumping condition in a confined aquifer.
The solutions assumes concentric annuli around the pumpingwell,
where each annulus has its own conductivity and storativity value.
Parameters
----------
s : :class:`numpy.ndarray`
Array with all Laplace-space-points
where the function should be evaluated
rad : :class:`numpy.ndarray`
Array with all radii where the function should be evaluated
S_part : :class:`numpy.ndarray` of length N
Given storativity values for each disk
K_part : :class:`numpy.ndarray` of length N
Given conductivity values for each disk
R_part : :class:`numpy.ndarray` of length N+1
Given radii separating the disks as well as starting- and endpoints
dim : :class:`float`
Flow dimension. Default: 3
lat_ext : :class:`float`
The lateral extend of the flow-domain, used in `L^(3-dim)`. Default: 1
rate : :class:`float`
Pumpingrate at the well
K_well : :class:`float`, optional
Conductivity at the well. Default: ``K_part[0]``
cut_off_prec : :class:`float`, optional
Define a cut-off precision for the calculation to select the disks
included in the calculation. Default ``1e-20``
cond : :class:`int`, optional
Type of the pumping condition:
* 0 : constant
* 1 : periodic (needs "w" as cond_kw)
* 2 : slug (rate will be interpreted as slug-volume)
* 3 : interval (needs "t" as cond_kw)
* callable: laplace-transformation of the transient pumping-rate
Default: 0
cond_kw : :class:`dict` optional
Keyword args for the pumping condition. Default: None
Returns
-------
grf_laplace : :class:`numpy.ndarray`
Array with all values in laplace-space
Examples
--------
>>> grf_laplace([5,10],[1,2,3],[1e-3,1e-3],[1e-3,2e-3],[0,2,10], 2, 1, -1)
array([[-2.71359196e+00, -1.66671965e-01, -2.82986917e-02],
[-4.58447458e-01, -1.12056319e-02, -9.85673855e-04]])
"""
cond_kw = {} if cond_kw is None else cond_kw
cond = cond if callable(cond) else PUMP_COND[cond]
# ensure that input is treated as arrays
s = np.squeeze(s).reshape(-1)
rad = np.squeeze(rad).reshape(-1)
S_part = np.squeeze(S_part).reshape(-1)
K_part = np.squeeze(K_part).reshape(-1)
R_part = np.squeeze(R_part).reshape(-1)
# the dimension is used by nu in the literature (See Barker 88)
dim = float(dim)
nu = 1.0 - dim / 2.0
nu1 = nu - 1
# the lateral extend is a bit subtle in fractured dimension
lat_ext = float(lat_ext)
rate = float(rate)
# get the number of partitions
parts = len(K_part)
# set the conductivity at the well
K_well = K_part[0] if K_well is None else float(K_well)
# check the input
if not len(R_part) - 1 == len(S_part) == len(K_part) > 0:
raise ValueError("R_part, S_part and K_part need matching lengths.")
if R_part[0] < 0.0:
raise ValueError("The wellradius needs to be >= 0.")
if not all([r1 < r2 for r1, r2 in zip(R_part[:-1], R_part[1:])]):
raise ValueError("The radii values need to be sorted.")
if not np.min(rad) > R_part[0] or np.max(rad) > R_part[-1]:
raise ValueError("The given radii need to be in the given range.")
if not all([con > 0 for con in K_part]):
raise ValueError("The Conductivity needs to be positiv.")
if not all([stor > 0 for stor in S_part]):
raise ValueError("The Storage needs to be positiv.")
if not dim > 0.0 or dim > 3.0:
raise ValueError("The dimension needs to be positiv and <= 3.")
if not lat_ext > 0.0:
raise ValueError("The lateral extend needs to be positiv.")
if not K_well > 0:
raise ValueError("The well conductivity needs to be positiv.")
# initialize the result
res = np.zeros(s.shape + rad.shape)
# the first sqrt of the diffusivity values
diff_sr0 = np.sqrt(S_part[0] / K_part[0])
# set the general pumping-condtion depending on the well-radius
if R_part[0] > 0.0:
Qs = -(s ** (-0.5)) / diff_sr0 * R_part[0] ** nu1 * cond(s, **cond_kw)
else:
Qs = -((2 / diff_sr0) ** nu) * s ** (-nu / 2) * cond(s, **cond_kw)
# if there is a homgeneouse aquifer, compute the result by hand
if parts == 1:
# initialize the equation system
V = np.zeros(2, dtype=float)
M = np.array([[-gamma(1 - nu), 2.0 / gamma(nu)], [0, 1]])
for si, se in enumerate(s):
Cs = np.sqrt(se) * diff_sr0
# set the pumping-condition at the well
V[0] = Qs[si]
# incorporate the boundary-conditions
if R_part[0] > 0.0:
M[0, :] = [-kv(nu1, Cs * R_part[0]), iv(nu1, Cs * R_part[0])]
if R_part[-1] < np.inf:
M[1, :] = [kv(nu, Cs * R_part[-1]), iv(nu, Cs * R_part[-1])]
else:
M[0, 1] = 0 # Bs is 0 in this case either way
# solve the equation system
As, Bs = np.linalg.solve(M, V)
# calculate the head
for ri, re in enumerate(rad):
if re < R_part[-1]:
res[si, ri] = re ** nu * (
As * kv(nu, Cs * re) + Bs * iv(nu, Cs * re)
)
# if there is more than one partition, create an equation system
else:
# initialize LHS and RHS for the linear equation system
# Mb is the banded matrix for the Eq-System
V = np.zeros(2 * parts)
Mb = np.zeros((5, 2 * parts))
X = np.zeros(2 * parts)
# set the standard boundary conditions for rwell=0.0 and rinf=np.inf
Mb[2, 0] = -gamma(1 - nu)
Mb[1, 1] = 2.0 / gamma(nu)
Mb[2, -1] = 1.0
# calculate the consecutive fractions of the conductivities
Kfrac = K_part[:-1] / K_part[1:]
# calculate the square-root of the diffusivities
difsr = np.sqrt(S_part / K_part)
# calculate a temporal substitution (factor from mass-conservation)
tmp = Kfrac * difsr[:-1] / difsr[1:]
# match the radii to the different disks
pos = np.searchsorted(R_part, rad) - 1
# iterate over the laplace-variable
for si, se in enumerate(s):
Cs = np.sqrt(se) * difsr
# set the pumping-condition at the well
# --> implement other pumping conditions
V[0] = Qs[si]
# generate the equation system as banded matrix
for i in range(parts - 1):
Mb[0, 2 * i + 3] = -iv(nu, Cs[i + 1] * R_part[i + 1])
Mb[1, 2 * i + 2 : 2 * i + 4] = [
-kv(nu, Cs[i + 1] * R_part[i + 1]),
-iv(nu1, Cs[i + 1] * R_part[i + 1]),
]
Mb[2, 2 * i + 1 : 2 * i + 3] = [
iv(nu, Cs[i] * R_part[i + 1]),
kv(nu1, Cs[i + 1] * R_part[i + 1]),
]
Mb[3, 2 * i : 2 * i + 2] = [
kv(nu, Cs[i] * R_part[i + 1]),
tmp[i] * iv(nu1, Cs[i] * R_part[i + 1]),
]
Mb[4, 2 * i] = -tmp[i] * kv(nu1, Cs[i] * R_part[i + 1])
# set the boundary-conditions if needed
if R_part[0] > 0.0:
Mb[2, 0] = -kv(nu1, Cs[0] * R_part[0])
Mb[1, 1] = iv(nu1, Cs[0] * R_part[0])
if R_part[-1] < np.inf:
Mb[-2, -2] = kv(nu, Cs[-1] * R_part[-1])
Mb[2, -1] = iv(nu, Cs[-1] * R_part[-1])
else: # erase the last row, since X[-1] will be 0
Mb[0, -1] = 0
Mb[1, -1] = 0
# find first disk which has no impact
Mb_cond = np.max(np.abs(Mb), axis=0)
Mb_cond_lo = Mb_cond < cut_off_prec
Mb_cond_hi = Mb_cond > 1 / cut_off_prec
Mb_cond = np.logical_or(Mb_cond_lo, Mb_cond_hi)
cond = np.where(Mb_cond)[0]
found = cond.shape[0] > 0
first = cond[0] // 2 if found else parts
# initialize coefficients
X[2 * first :] = 0.0
# only the first disk has an impact
if first <= 1:
M_sgl = np.eye(2, dtype=float)
M_sgl[:, 0] = Mb[2:4, 0]
M_sgl[:, 1] = Mb[1:3, 1]
# solve the equation system
try:
X[:2] = np.linalg.solve(M_sgl, V[:2])
except np.linalg.LinAlgError:
# set 0 if matrix singular
X[:2] = 0
elif first > 1:
# shrink the matrix
M_sgl = Mb[:, : 2 * first]
if first < parts:
M_sgl[-1, -1] = 0
M_sgl[-2, -1] = 0
M_sgl[-1, -2] = 0
X[: 2 * first] = solve(
M_sgl, V[: 2 * first], is_flat=True, index_row_wise=False
)
np.nan_to_num(X, copy=False)
# calculate the head (ignore small values)
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
k0_sub = X[2 * pos] * kv(nu, Cs[pos] * rad)
k0_sub[np.abs(X[2 * pos]) < cut_off_prec] = 0
i0_sub = X[2 * pos + 1] * iv(nu, Cs[pos] * rad)
i0_sub[np.abs(X[2 * pos + 1]) < cut_off_prec] = 0
res[si, :] = rad ** nu * (k0_sub + i0_sub)
# set problematic values to 0
# --> the algorithm tends to violate small values,
# therefore this approach is suitable
np.nan_to_num(res, copy=False)
# scale to pumpingrate
res *= rate / (K_well * sph_surf(dim) * lat_ext ** (3.0 - dim))
return res
if __name__ == "__main__":
import doctest
doctest.testmod()