-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnextflow.config
executable file
·119 lines (95 loc) · 2.93 KB
/
nextflow.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
params.projetctName = "test"
params.outdir = "output/${params.projetctName}"
params.tracedir = "${params.outdir}/pipeline_info"
/***************************
* PIPELINE INPUT PARAMETRES
*/
// BASIC INPUTS.
params.matrix = null
params.transcriptome = null
params.ref_genome = null
// FEATURES : Provide a GTF file if the matrix row names do not correspond to "transcript_id".
params.features = "transcript_id"
params.full_length = false
params.unspliced_ratio = 0
params.gtf = null
params.umi_duplication = 0
// NOVEL TRANSCRIPTS : To simulate novel transcripts, you need to provide the corresponding
// annotation file of the novel transcripts in GFF3 format (e.g. from FLAMES or StringTie pipeline)
// and the reference genome in FASTA format.
params.novel_transcripts = false
// SIMULATE CELL BARCODE COUNTS : produce a realistic knee plot.
params.bc_counts = null
// SIMULATE CELL TYPES.
params.sim_celltypes = false
params.cell_types_annotation = null
/***************************
* PCR AMPLIFICATION PARAMETRES
*/
params.pcr_cycles = 0
params.pcr_total_reads = null
params.pcr_error_rate = 0.00000001
params.pcr_dup_rate = 0.7
/*************
* ERROR MODEL
*/
// BUILD YOUR PERSONAL MODEL
params.build_model = false
params.fastq_model = null
params.identity_model = null
// USE MODEL
params.trained_model = null
params.badread_identity = "97.0,4.0,100"
params.length_dist = "0.37,0.0,824.94"
params.truncation_model = "bin/models/truncation_default_model.csv"
// INTRON RETENTION MODEL
params.intron_retention = false
params.ir_model = "bin/models/SC3pv3_GEX_Human_IR_markov_model"
// IMPORT PRE-TRAINED MODEL (FILES)
params.error_model = null
params.qscore_model = null
/*************
* BASIC CONFIG
*/
params.ADPTER_SEQ = 'ACTAAAGGCCATTACGGCCTACACGACGCTCTTCCGATCT'
params.TSO_SEQ = 'TGTACTCTGCGTTGATACCACTGCTT'
params.dT_LENGTH = 20
/****************
* RUN PARAMETERS
*/
params.threads = 10
params.seed = 2025
docker.enabled = true
process.container = 'genomicpariscentre/asarusim:1.0'
docker.runOptions = '-u $(id -u):$(id -g)'
/****************
* RUN TRACE
*/
// Load base.config by default for all pipelines
// includeConfig 'conf/base.config'
def trace_timestamp = new java.util.Date().format( 'yyyy-MM-dd_HH-mm-ss')
timeline {
enabled = true
file = "${params.tracedir}/execution_timeline_${trace_timestamp}.html"
}
report {
enabled = true
file = "${params.tracedir}/execution_report_${trace_timestamp}.html"
}
trace {
enabled = true
file = "${params.tracedir}/execution_trace_${trace_timestamp}.txt"
}
dag {
enabled = true
file = "${params.tracedir}/pipeline_dag_${trace_timestamp}.html"
}
manifest {
name = 'AsaruSim'
author = 'GenomiqueENS'
homePage = 'https://github.com/GenomiqueENS/AsaruSim'
description = 'Simulating 10x single-cell long-reads'
mainScript = 'main.nf'
nextflowVersion = '!>=21.10.3'
version = '1.0.1'
}