diff --git a/examples/gallery/plot/points-categorial.py b/examples/gallery/plot/points-categorial.py new file mode 100644 index 00000000000..93b757c7191 --- /dev/null +++ b/examples/gallery/plot/points-categorial.py @@ -0,0 +1,48 @@ +""" +Color points by categories +--------------------------- +The :meth:`pygmt.Figure.plot` method can be used to plot symbols which are +color-coded by categories. +""" + +import numpy as np +import pandas as pd +import pygmt + +# Load sample iris data, and convert 'species' column to categorical dtype +df = pd.read_csv("https://github.com/mwaskom/seaborn-data/raw/master/iris.csv") +df["species"] = df.species.astype(dtype="category") + +# Use pygmt.info to get region bounds (xmin, xmax, ymin, ymax) +# The below example will return a numpy array like [2. 4.4 4.3 7.9] +region = pygmt.info( + table=df[["sepal_width", "sepal_length"]], # x and y columns + per_column=True, # report output as a numpy array +) + +# Make our 2D categorial scatter plot, coloring each of the 3 species differently +fig = pygmt.Figure() + +# Generate basemap of 10cm x 10cm size +fig.basemap( + region=region, + projection="X10c/10c", + frame=['xafg+l"Sepal Width"', 'yafg+l"Sepal Length"', "WSen"], +) + +# Define colormap to use for three categories +pygmt.makecpt(cmap="inferno", color_model="+c", series=(0, 3, 1)) + +fig.plot( + x=df.sepal_width, # Use one feature as x data input + y=df.sepal_length, # Use another feature as y data input + sizes=df.petal_width + / df.petal_length, # Vary each symbol size according to the ratio of the two remaining features + color=df.species.cat.codes.astype(int), # Points colored by categorical number code + cmap=True, # Use colormap created by makecpt + no_clip=True, # Do not clip symbols that fall exactly on the map bounds + style="cc", # Use circles as symbols with size in centimeter units + transparency=40, # Set transparency level for all symbols to deal with overplotting +) + +fig.show()