Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conditionally palinear returns results for #46

Open
mightyphil2000 opened this issue Apr 8, 2020 · 1 comment
Open

Conditionally palinear returns results for #46

mightyphil2000 opened this issue Apr 8, 2020 · 1 comment

Comments

@mightyphil2000
Copy link

No description provided.

@mightyphil2000
Copy link
Author

Using palinear, a colleague of mine ran a GWAS on a quantitative trait conditioning on the top hit from the marginal results. For practical reasons, they ran the conditional model for all SNPs, including the top hit. Therefore the tested SNP will be perfectly collinear with the covariate/adjusted SNP in one of the models. In the latter model, where tested and adjusted SNP are the same, palinear returns a result for the SNP. Many statistical software packages would typically drop one of the collinear SNPs, returning a result for the SNP that is identical to its result in the marginal results (i.e. unadjusted for any SNPs). However, this does not happen with palinear, which returns a result for the SNP in question that is completely different from its marginal result. i.e. the slope (b1) in model1 (Y = b1SNP1) is completely different from b1 in model2 ( Y=b1SNP1 + b1*SNP1).

Could you comment on how palinear handles perfectly colinear variables in the same model?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant