import numpy as np from scipy import sparse from xnetmf import * from config import * A = sparse.csr_matrix( np.random.randint(2,size=(4,4)) ) B = sparse.csr_matrix( np.random.randint(2,size=(4,4)) ) comb = sparse.block_diag([A,B]) graph = Graph(adj = comb.tocsr()) rep_method = RepMethod(max_layer = 2) representations = get_representations(graph, rep_method) print representations.shape