-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo_generate_synthetic_data.m
37 lines (29 loc) · 1.17 KB
/
demo_generate_synthetic_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function [X,P,labels_bag,labels_point,bag_number,dataBagged] = demo_generate_synthetic_data()
% This function generates synthetic data following definition of multiple instance learning problem
% REFERENCE :
% C. Jiao, A. Zare,
% Functions of Multiple Instances for Learning Target Signatures,
% IEEE transactions on Geoscience and Remote Sensing, Vol. 53, No. 8, Aug. 2015, DOI: 10.1109/TGRS.2015.2406334
%
% SYNTAX: [X,P,labels_bag,labels_point]= demo_generate_synthetic_data()
% Inputs:
% None
%
%Outputs:
% X - dataset in column vectors
% P - proportion set in column vectors
% labels_bag - bag level label per data point
% labels_point - instance level label per data point
% Author: Changzhe Jiao, Alina Zare
% University of Missouri, Department of Electrical and Computer Engineering
% Email Address: [email protected]; [email protected]
addpath('./gen_synthetic_data_code')
addpath('./synthetic_data')
load('E_truth')
load('originalData')
% Generate Single Target Synthetic Dataset
parameters = setParameters();
[X,P,labels_bag,labels_point,bag_number,dataBagged] = gen_multi_tar_mixed_data(E_truth, parameters);
% Plot
plotSpectra(originalData, parameters)
end