-
Notifications
You must be signed in to change notification settings - Fork 123
/
Random.hs
485 lines (413 loc) · 17 KB
/
Random.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
-- |
-- Module : Cryptol.Testing.Random
-- Copyright : (c) 2013-2016 Galois, Inc.
-- License : BSD3
-- Maintainer : [email protected]
-- Stability : provisional
-- Portability : portable
--
-- This module generates random values for Cryptol types.
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
module Cryptol.Testing.Random where
import qualified Control.Exception as X
import Control.Monad (join, liftM2)
import Data.Ratio ((%))
import Data.Bits ( (.&.), shiftR )
import Data.List (unfoldr, genericTake, genericIndex, genericReplicate)
import qualified Data.Sequence as Seq
import System.Random (RandomGen, split, random, randomR)
import System.Random.TF.Gen (seedTFGen)
import Cryptol.Eval.Backend (Backend(..), SRational(..))
import Cryptol.Eval.Concrete.Value
import Cryptol.Eval.Monad (ready,runEval,EvalOpts,Eval,EvalError(..))
import Cryptol.Eval.Type (TValue(..), tValTy)
import Cryptol.Eval.Value (GenValue(..),SeqMap(..), WordValue(..),
ppValue, defaultPPOpts, finiteSeqMap)
import Cryptol.Eval.Generic (zeroV)
import Cryptol.TypeCheck.AST (Type(..), TCon(..), TC(..), tNoUser, tIsFun
, tIsNum )
import Cryptol.TypeCheck.SimpType(tRebuild')
import Cryptol.Utils.Ident (Ident)
import Cryptol.Utils.Panic (panic)
import Cryptol.Utils.RecordMap
type Gen g x = Integer -> g -> (SEval x (GenValue x), g)
{- | Apply a testable value to some randomly-generated arguments.
Returns @Nothing@ if the function returned @True@, or
@Just counterexample@ if it returned @False@.
Please note that this function assumes that the generators match
the supplied value, otherwise we'll panic.
-}
runOneTest :: RandomGen g
=> EvalOpts -- ^ how to evaluate things
-> Value -- ^ Function under test
-> [Gen g Concrete] -- ^ Argument generators
-> Integer -- ^ Size
-> g
-> IO (TestResult, g)
runOneTest evOpts fun argGens sz g0 = do
let (args, g1) = foldr mkArg ([], g0) argGens
mkArg argGen (as, g) = let (a, g') = argGen sz g in (a:as, g')
args' <- runEval evOpts (sequence args)
result <- evalTest evOpts fun args'
return (result, g1)
returnOneTest :: RandomGen g
=> EvalOpts -- ^ How to evaluate things
-> Value -- ^ Function to be used to calculate tests
-> [Gen g Concrete] -- ^ Argument generators
-> Integer -- ^ Size
-> g -- ^ Initial random state
-> IO ([Value], Value, g) -- ^ Arguments, result, and new random state
returnOneTest evOpts fun argGens sz g0 =
do let (args, g1) = foldr mkArg ([], g0) argGens
mkArg argGen (as, g) = let (a, g') = argGen sz g in (a:as, g')
args' <- runEval evOpts (sequence args)
result <- runEval evOpts (go fun args')
return (args', result, g1)
where
go (VFun f) (v : vs) = join (go <$> (f (ready v)) <*> pure vs)
go (VFun _) [] = panic "Cryptol.Testing.Random" ["Not enough arguments to function while generating tests"]
go _ (_ : _) = panic "Cryptol.Testing.Random" ["Too many arguments to function while generating tests"]
go v [] = return v
-- | Return a collection of random tests.
returnTests :: RandomGen g
=> g -- ^ The random generator state
-> EvalOpts -- ^ How to evaluate things
-> [Gen g Concrete] -- ^ Generators for the function arguments
-> Value -- ^ The function itself
-> Int -- ^ How many tests?
-> IO [([Value], Value)] -- ^ A list of pairs of random arguments and computed outputs
returnTests g evo gens fun num = go gens g 0
where
go args g0 n
| n >= num = return []
| otherwise =
do let sz = toInteger (div (100 * (1 + n)) num)
(inputs, output, g1) <- returnOneTest evo fun args sz g0
more <- go args g1 (n + 1)
return ((inputs, output) : more)
{- | Given a (function) type, compute generators for the function's
arguments. This is like 'testableTypeGenerators', but allows the result to be
any finite type instead of just @Bit@. -}
dumpableType :: forall g. RandomGen g => Type -> Maybe [Gen g Concrete]
dumpableType ty =
case tIsFun ty of
Just (t1, t2) ->
do g <- randomValue Concrete t1
as <- testableTypeGenerators t2
return (g : as)
Nothing ->
do (_ :: Gen g Concrete) <- randomValue Concrete ty
return []
{- | Given a (function) type, compute generators for
the function's arguments. Currently we do not support polymorphic functions.
In principle, we could apply these to random types, and test the results. -}
testableTypeGenerators :: RandomGen g => Type -> Maybe [Gen g Concrete]
testableTypeGenerators ty =
case tNoUser ty of
TCon (TC TCFun) [t1,t2] ->
do g <- randomValue Concrete t1
as <- testableTypeGenerators t2
return (g : as)
TCon (TC TCBit) [] -> return []
_ -> Nothing
{-# SPECIALIZE randomValue ::
RandomGen g => Concrete -> Type -> Maybe (Gen g Concrete)
#-}
{- | A generator for values of the given type. This fails if we are
given a type that lacks a suitable random value generator. -}
randomValue :: (Backend sym, RandomGen g) => sym -> Type -> Maybe (Gen g sym)
randomValue sym ty =
case ty of
TCon tc ts ->
case (tc, map (tRebuild' False) ts) of
(TC TCBit, []) -> Just (randomBit sym)
(TC TCInteger, []) -> Just (randomInteger sym)
(TC TCRational, []) -> Just (randomRational sym)
(TC TCIntMod, [TCon (TC (TCNum n)) []]) ->
do return (randomIntMod sym n)
(TC TCFloat, [e',p']) | Just e <- tIsNum e', Just p <- tIsNum p' ->
return (randomFloat sym e p)
(TC TCSeq, [TCon (TC TCInf) [], el]) ->
do mk <- randomValue sym el
return (randomStream mk)
(TC TCSeq, [TCon (TC (TCNum n)) [], TCon (TC TCBit) []]) ->
return (randomWord sym n)
(TC TCSeq, [TCon (TC (TCNum n)) [], el]) ->
do mk <- randomValue sym el
return (randomSequence n mk)
(TC (TCTuple _), els) ->
do mks <- mapM (randomValue sym) els
return (randomTuple mks)
_ -> Nothing
TVar _ -> Nothing
TUser _ _ t -> randomValue sym t
TRec fs -> do gs <- traverse (randomValue sym) fs
return (randomRecord gs)
{-# INLINE randomBit #-}
-- | Generate a random bit value.
randomBit :: (Backend sym, RandomGen g) => sym -> Gen g sym
randomBit sym _ g =
let (b,g1) = random g
in (pure (VBit (bitLit sym b)), g1)
{-# INLINE randomSize #-}
randomSize :: RandomGen g => Int -> Int -> g -> (Int, g)
randomSize k n g
| p == 1 = (n, g')
| otherwise = randomSize k (n + 1) g'
where (p, g') = randomR (1, k) g
{-# INLINE randomInteger #-}
-- | Generate a random integer value. The size parameter is assumed to
-- vary between 1 and 100, and we use it to generate smaller numbers
-- first.
randomInteger :: (Backend sym, RandomGen g) => sym -> Gen g sym
randomInteger sym w g =
let (n, g1) = if w < 100 then (fromInteger w, g) else randomSize 8 100 g
(i, g2) = randomR (- 256^n, 256^n) g1
in (VInteger <$> integerLit sym i, g2)
{-# INLINE randomIntMod #-}
randomIntMod :: (Backend sym, RandomGen g) => sym -> Integer -> Gen g sym
randomIntMod sym modulus _ g =
let (i, g') = randomR (0, modulus-1) g
in (VInteger <$> integerLit sym i, g')
{-# INLINE randomRational #-}
randomRational :: (Backend sym, RandomGen g) => sym -> Gen g sym
randomRational sym w g =
let (sz, g1) = if w < 100 then (fromInteger w, g) else randomSize 8 100 g
(n, g2) = randomR (- 256^sz, 256^sz) g1
(d, g3) = randomR ( 1, 256^sz) g2
in (do n' <- integerLit sym n
d' <- integerLit sym d
pure (VRational (SRational n' d'))
, g3)
{-# INLINE randomWord #-}
-- | Generate a random word of the given length (i.e., a value of type @[w]@)
-- The size parameter is assumed to vary between 1 and 100, and we use
-- it to generate smaller numbers first.
randomWord :: (Backend sym, RandomGen g) => sym -> Integer -> Gen g sym
randomWord sym w _sz g =
let (val, g1) = randomR (0,2^w-1) g
in (return $ VWord w (WordVal <$> wordLit sym w val), g1)
{-# INLINE randomStream #-}
-- | Generate a random infinite stream value.
randomStream :: (Backend sym, RandomGen g) => Gen g sym -> Gen g sym
randomStream mkElem sz g =
let (g1,g2) = split g
in (pure $ VStream $ IndexSeqMap $ genericIndex (unfoldr (Just . mkElem sz) g1), g2)
{-# INLINE randomSequence #-}
{- | Generate a random sequence. This should be used for sequences
other than bits. For sequences of bits use "randomWord". -}
randomSequence :: (Backend sym, RandomGen g) => Integer -> Gen g sym -> Gen g sym
randomSequence w mkElem sz g0 = do
let (g1,g2) = split g0
let f g = let (x,g') = mkElem sz g
in seq x (Just (x, g'))
let xs = Seq.fromList $ genericTake w $ unfoldr f g1
seq xs (pure $ VSeq w $ IndexSeqMap $ (Seq.index xs . fromInteger), g2)
{-# INLINE randomTuple #-}
-- | Generate a random tuple value.
randomTuple :: (Backend sym, RandomGen g) => [Gen g sym] -> Gen g sym
randomTuple gens sz = go [] gens
where
go els [] g = (pure $ VTuple (reverse els), g)
go els (mkElem : more) g =
let (v, g1) = mkElem sz g
in seq v (go (v : els) more g1)
{-# INLINE randomRecord #-}
-- | Generate a random record value.
randomRecord :: (Backend sym, RandomGen g) => RecordMap Ident (Gen g sym) -> Gen g sym
randomRecord gens sz g0 =
let (g', m) = recordMapAccum mk g0 gens in (pure $ VRecord m, g')
where
mk g gen =
let (v, g') = gen sz g
in seq v (g', v)
randomFloat ::
(Backend sym, RandomGen g) =>
sym ->
Integer {- ^ Exponent width -} ->
Integer {- ^ Precision width -} ->
Gen g sym
randomFloat sym e p w g =
( VFloat <$> fpLit sym e p (nu % de)
, g3
)
where
-- XXX: we never generat NaN
-- XXX: Not sure that we need such big integers, we should probably
-- use `e` and `p` as a guide.
(n, g1) = if w < 100 then (fromInteger w, g) else randomSize 8 100 g
(nu, g2) = randomR (- 256^n, 256^n) g1
(de, g3) = randomR (1, 256^n) g2
-- Random Values ---------------------------------------------------------------
{-# SPECIALIZE randomV ::
Concrete -> TValue -> Integer -> SEval Concrete (GenValue Concrete)
#-}
-- | Produce a random value with the given seed. If we do not support
-- making values of the given type, return zero of that type.
-- TODO: do better than returning zero
randomV :: Backend sym => sym -> TValue -> Integer -> SEval sym (GenValue sym)
randomV sym ty seed =
case randomValue sym (tValTy ty) of
Nothing -> zeroV sym ty
Just gen ->
-- unpack the seed into four Word64s
let mask64 = 0xFFFFFFFFFFFFFFFF
unpack s = fromInteger (s .&. mask64) : unpack (s `shiftR` 64)
[a, b, c, d] = take 4 (unpack seed)
in fst $ gen 100 $ seedTFGen (a, b, c, d)
-- | A test result is either a pass, a failure due to evaluating to
-- @False@, or a failure due to an exception raised during evaluation
data TestResult
= Pass
| FailFalse [Value]
| FailError EvalError [Value]
isPass :: TestResult -> Bool
isPass Pass = True
isPass _ = False
-- | Apply a testable value to some arguments.
-- Note that this function assumes that the values come from a call to
-- `testableType` (i.e., things are type-correct). We run in the IO
-- monad in order to catch any @EvalError@s.
evalTest :: EvalOpts -> Value -> [Value] -> IO TestResult
evalTest evOpts v0 vs0 = run `X.catch` handle
where
run = do
result <- runEval evOpts (go v0 vs0)
if result
then return Pass
else return (FailFalse vs0)
handle e = return (FailError e vs0)
go :: Value -> [Value] -> Eval Bool
go (VFun f) (v : vs) = join (go <$> (f (ready v)) <*> return vs)
go (VFun _) [] = panic "Not enough arguments while applying function"
[]
go (VBit b) [] = return b
go v vs = do vdoc <- ppValue Concrete defaultPPOpts v
vsdocs <- mapM (ppValue Concrete defaultPPOpts) vs
panic "Type error while running test" $
[ "Function:"
, show vdoc
, "Arguments:"
] ++ map show vsdocs
{- | Given a (function) type, compute all possible inputs for it.
We also return the types of the arguments and
the total number of test (i.e., the length of the outer list. -}
testableType :: Type -> Maybe (Maybe Integer, [Type], [[Value]])
testableType ty =
case tNoUser ty of
TCon (TC TCFun) [t1,t2] ->
do let sz = typeSize t1
(tot,ts,vss) <- testableType t2
return (liftM2 (*) sz tot, t1:ts, [ v : vs | v <- typeValues t1, vs <- vss ])
TCon (TC TCBit) [] -> return (Just 1, [], [[]])
_ -> Nothing
{- | Given a fully-evaluated type, try to compute the number of values in it.
Returns `Nothing` for infinite types, user-defined types, polymorphic types,
and, currently, function spaces. Of course, we can easily compute the
sizes of function spaces, but we can't easily enumerate their inhabitants. -}
typeSize :: Type -> Maybe Integer
typeSize ty =
case ty of
TVar _ -> Nothing
TUser _ _ t -> typeSize t
TRec fs -> product <$> traverse typeSize fs
TCon (TC tc) ts ->
case (tc, ts) of
(TCNum _, _) -> Nothing
(TCInf, _) -> Nothing
(TCBit, _) -> Just 2
(TCInteger, _) -> Nothing
(TCRational, _) -> Nothing
(TCIntMod, [sz]) -> case tNoUser sz of
TCon (TC (TCNum n)) _ -> Just n
_ -> Nothing
(TCIntMod, _) -> Nothing
(TCFloat {}, _) -> Nothing
(TCArray, _) -> Nothing
(TCSeq, [sz,el]) -> case tNoUser sz of
TCon (TC (TCNum n)) _ -> (^ n) <$> typeSize el
_ -> Nothing
(TCSeq, _) -> Nothing
(TCFun, _) -> Nothing
(TCTuple _, els) -> product <$> mapM typeSize els
(TCAbstract _, _) -> Nothing
(TCNewtype _, _) -> Nothing
TCon _ _ -> Nothing
{- | Returns all the values in a type. Returns an empty list of values,
for types where 'typeSize' returned 'Nothing'. -}
typeValues :: Type -> [Value]
typeValues ty =
case ty of
TVar _ -> []
TUser _ _ t -> typeValues t
TRec fs -> [ VRecord (fmap ready xs)
| xs <- traverse typeValues fs
]
TCon (TC tc) ts ->
case tc of
TCNum _ -> []
TCInf -> []
TCBit -> [ VBit False, VBit True ]
TCInteger -> []
TCRational -> []
TCIntMod ->
case map tNoUser ts of
[ TCon (TC (TCNum n)) _ ] | 0 < n ->
[ VInteger x | x <- [ 0 .. n - 1 ] ]
_ -> []
TCFloat {} -> []
TCArray -> []
TCSeq ->
case map tNoUser ts of
[ TCon (TC (TCNum n)) _, TCon (TC TCBit) [] ] ->
[ VWord n (ready (WordVal (BV n x))) | x <- [ 0 .. 2^n - 1 ] ]
[ TCon (TC (TCNum n)) _, t ] ->
[ VSeq n (finiteSeqMap Concrete (map ready xs))
| xs <- sequence $ genericReplicate n
$ typeValues t ]
_ -> []
TCFun -> [] -- We don't generate function values.
TCTuple _ -> [ VTuple (map ready xs)
| xs <- sequence (map typeValues ts)
]
TCAbstract _ -> []
TCNewtype _ -> []
TCon _ _ -> []
--------------------------------------------------------------------------------
-- Driver function
data TestSpec m s = TestSpec {
testFn :: Integer -> s -> m (TestResult, s)
, testProp :: String -- ^ The property as entered by the user
, testTotal :: Integer
, testPossible :: Maybe Integer -- ^ Nothing indicates infinity
, testRptProgress :: Integer -> Integer -> m ()
, testClrProgress :: m ()
, testRptFailure :: TestResult -> m ()
, testRptSuccess :: m ()
}
data TestReport = TestReport {
reportResult :: TestResult
, reportProp :: String -- ^ The property as entered by the user
, reportTestsRun :: Integer
, reportTestsPossible :: Maybe Integer
}
runTests :: Monad m => TestSpec m s -> s -> m TestReport
runTests TestSpec {..} st0 = go 0 st0
where
go testNum _ | testNum >= testTotal = do
testRptSuccess
return $ TestReport Pass testProp testNum testPossible
go testNum st =
do testRptProgress testNum testTotal
res <- testFn (div (100 * (1 + testNum)) testTotal) st
testClrProgress
case res of
(Pass, st') -> do -- delProgress -- unnecessary?
go (testNum + 1) st'
(failure, _st') -> do
testRptFailure failure
return $ TestReport failure testProp testNum testPossible