-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
rop.py
1692 lines (1406 loc) · 57.5 KB
/
rop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
r"""
Return Oriented Programming
Manual ROP
-------------------
The ROP tool can be used to build stacks pretty trivially.
Let's create a fake binary which has some symbols which might
have been useful.
>>> context.clear(arch='i386')
>>> binary = ELF.from_assembly('add esp, 0x10; ret; pop eax; ret; pop ecx; pop ebx; ret')
>>> binary.symbols = {'read': 0xdeadbeef, 'write': 0xdecafbad, 'execve': 0xcafebabe, 'exit': 0xfeedface}
Creating a ROP object which looks up symbols in the binary is pretty straightforward.
>>> rop = ROP(binary)
Once to ROP object has been loaded, you can trivially find gadgets, by using magic properties on the ``ROP`` object.
Each :class:`Gadget` has an ``address`` property which has the real address as well.
>>> rop.eax
Gadget(0x10000004, ['pop eax', 'ret'], ['eax'], 0x8)
>>> hex(rop.eax.address)
'0x10000004'
Other, more complicated gadgets also happen magically
>>> rop.ecx
Gadget(0x10000006, ['pop ecx', 'pop ebx', 'ret'], ['ecx', 'ebx'], 0xc)
The easiest way to set up individual registers is to invoke the ``ROP`` object as a callable, with the registers as arguments.
This has the benefit of using multi-pop gadgets to set multiple registers with one gadget.
>>> rop(eax=0x11111111, ecx=0x22222222)
Setting register values this way accounts for padding and extra registers which are popped off the stack.
Values which are filled with garbage (i.e. are not used) are filled with the :func:`cyclic` pattern
which corresponds to their offset, which is useful when debuggging your exploit.
>>> print(rop.dump())
0x0000: 0x10000006 pop ecx; pop ebx; ret
0x0004: 0x22222222
0x0008: b'caaa' <pad ebx>
0x000c: 0x10000004 pop eax; ret
0x0010: 0x11111111
If you really want to set one register at a time, you can also use the assignment form.
It's generally advised to use the rop(eax=..., ecx=...) form, since there may be an
e.g. ``pop eax; pop ecx; ret`` gadget that can be taken advantage of.
>>> rop = ROP(binary)
>>> rop.eax = 0xdeadf00d
>>> rop.ecx = 0xc01dbeef
>>> rop.raw(0xffffffff)
>>> print(rop.dump())
0x0000: 0x10000004 pop eax; ret
0x0004: 0xdeadf00d
0x0008: 0x10000006 pop ecx; pop ebx; ret
0x000c: 0xc01dbeef
0x0010: b'eaaa' <pad ebx>
0x0014: 0xffffffff
If you just want to FIND a ROP gadget, you can access them as a property on the ``ROP``
object by register name.
>>> rop = ROP(binary)
>>> rop.eax
Gadget(0x10000004, ['pop eax', 'ret'], ['eax'], 0x8)
>>> hex(rop.eax.address)
'0x10000004'
>>> rop.raw(rop.eax)
>>> rop.raw(0x12345678)
>>> print(rop.dump())
0x0000: 0x10000004 pop eax; ret
0x0004: 0x12345678
Let's re-create our ROP object now to show for some other examples.:
>>> rop = ROP(binary)
With the ROP object, you can manually add stack frames.
>>> rop.raw(0)
>>> rop.raw(unpack(b'abcd'))
>>> rop.raw(2)
Inspecting the ROP stack is easy, and laid out in an easy-to-read
manner.
>>> print(rop.dump())
0x0000: 0x0
0x0004: 0x64636261
0x0008: 0x2
The ROP module is also aware of how to make function calls with
standard Linux ABIs.
>>> rop.call('read', [4,5,6])
>>> print(rop.dump())
0x0000: 0x0
0x0004: 0x64636261
0x0008: 0x2
0x000c: 0xdeadbeef read(4, 5, 6)
0x0010: b'eaaa' <return address>
0x0014: 0x4 arg0
0x0018: 0x5 arg1
0x001c: 0x6 arg2
You can also use a shorthand to invoke calls.
The stack is automatically adjusted for the next frame
>>> rop.write(7,8,9)
>>> rop.exit()
>>> print(rop.dump())
0x0000: 0x0
0x0004: 0x64636261
0x0008: 0x2
0x000c: 0xdeadbeef read(4, 5, 6)
0x0010: 0x10000000 <adjust @0x24> add esp, 0x10; ret
0x0014: 0x4 arg0
0x0018: 0x5 arg1
0x001c: 0x6 arg2
0x0020: b'iaaa' <pad>
0x0024: 0xdecafbad write(7, 8, 9)
0x0028: 0xfeedface exit()
0x002c: 0x7 arg0
0x0030: 0x8 arg1
0x0034: 0x9 arg2
You can also append complex arguments onto stack when the stack pointer is known.
>>> rop = ROP(binary, base=0x7fffe000)
>>> rop.call('execve', [b'/bin/sh', [[b'/bin/sh'], [b'-p'], [b'-c'], [b'ls']], 0])
>>> print(rop.dump())
0x7fffe000: 0xcafebabe execve([b'/bin/sh'], [[b'/bin/sh'], [b'-p'], [b'-c'], [b'ls']], 0)
0x7fffe004: b'baaa' <return address>
0x7fffe008: 0x7fffe014 arg0 (+0xc)
0x7fffe00c: 0x7fffe01c arg1 (+0x10)
0x7fffe010: 0x0 arg2
0x7fffe014: b'/bin/sh\x00'
0x7fffe01c: 0x7fffe02c (+0x10)
0x7fffe020: 0x7fffe034 (+0x14)
0x7fffe024: 0x7fffe038 (+0x14)
0x7fffe028: 0x7fffe03c (+0x14)
0x7fffe02c: b'/bin/sh\x00'
0x7fffe034: b'-p\x00$'
0x7fffe038: b'-c\x00$'
0x7fffe03c: b'ls\x00$'
ROP also detects 'jmp $sp' gadget to help exploit binaries with NX disabled.
You can get this gadget on 'i386':
>>> context.clear(arch='i386')
>>> elf = ELF.from_assembly('nop; jmp esp; ret')
>>> rop = ROP(elf)
>>> jmp_gadget = rop.jmp_esp
>>> elf.read(jmp_gadget.address, 2) == asm('jmp esp')
True
You can also get this gadget on 'amd64':
>>> context.clear(arch='amd64')
>>> elf = ELF.from_assembly('nop; jmp rsp; ret')
>>> rop = ROP(elf)
>>> jmp_gadget = rop.jmp_rsp
>>> elf.read(jmp_gadget.address, 2) == asm('jmp rsp')
True
Gadgets whose address has badchar are filtered out:
>>> context.clear(arch='i386')
>>> elf = ELF.from_assembly('nop; pop eax; jmp esp; int 0x80; jmp esp; ret')
>>> rop = ROP(elf, badchars=b'\x02')
>>> jmp_gadget = rop.jmp_esp # It returns the second gadget
>>> elf.read(jmp_gadget.address, 2) == asm('jmp esp')
True
>>> rop = ROP(elf, badchars=b'\x02\x06')
>>> rop.jmp_esp == None # The address of both gadgets has badchar
True
ROP Example
-------------------
Let's assume we have a trivial binary that just reads some data
onto the stack, and returns.
>>> context.clear(arch='i386')
>>> c = constants
>>> assembly = 'read:' + shellcraft.read(c.STDIN_FILENO, 'esp', 1024)
>>> assembly += 'ret\n'
Let's provide some simple gadgets:
>>> assembly += 'add_esp: add esp, 0x10; ret\n'
And perhaps a nice "write" function.
>>> assembly += 'write: enter 0,0\n'
>>> assembly += ' mov ebx, [ebp+4+4]\n'
>>> assembly += ' mov ecx, [ebp+4+8]\n'
>>> assembly += ' mov edx, [ebp+4+12]\n'
>>> assembly += shellcraft.write('ebx', 'ecx', 'edx')
>>> assembly += ' leave\n'
>>> assembly += ' ret\n'
>>> assembly += 'flag: .asciz "The flag"\n'
And a way to exit cleanly.
>>> assembly += 'exit: ' + shellcraft.exit(0)
>>> binary = ELF.from_assembly(assembly)
Finally, let's build our ROP stack
>>> rop = ROP(binary)
>>> rop.write(c.STDOUT_FILENO, binary.symbols['flag'], 8)
>>> rop.exit()
>>> print(rop.dump())
0x0000: 0x10000012 write(STDOUT_FILENO, 0x10000026, 8)
0x0004: 0x1000002f exit()
0x0008: 0x1 STDOUT_FILENO
0x000c: 0x10000026 flag
0x0010: 0x8 arg2
The raw data from the ROP stack is available via `r.chain()` (or `bytes(r)`).
>>> raw_rop = rop.chain()
>>> print(enhex(raw_rop))
120000102f000010010000002600001008000000
Let's try it out!
>>> p = process(binary.path)
>>> p.send(raw_rop)
>>> print(repr(p.recvall(timeout=5)))
b'The flag'
ROP Example (amd64)
-------------------
For amd64 binaries, the registers are loaded off the stack. Pwntools can do
basic reasoning about simple "pop; pop; add; ret"-style gadgets, and satisfy
requirements so that everything "just works".
>>> context.clear(arch='amd64')
>>> assembly = 'pop rdx; pop rdi; pop rsi; add rsp, 0x20; ret; target: ret'
>>> binary = ELF.from_assembly(assembly)
>>> rop = ROP(binary)
>>> rop.target(1,2,3)
>>> print(rop.dump())
0x0000: 0x10000000 pop rdx; pop rdi; pop rsi; add rsp, 0x20; ret
0x0008: 0x3 [arg2] rdx = 3
0x0010: 0x1 [arg0] rdi = 1
0x0018: 0x2 [arg1] rsi = 2
0x0020: b'iaaajaaa' <pad 0x20>
0x0028: b'kaaalaaa' <pad 0x18>
0x0030: b'maaanaaa' <pad 0x10>
0x0038: b'oaaapaaa' <pad 0x8>
0x0040: 0x10000008 target
>>> rop.target(1)
>>> print(rop.dump())
0x0000: 0x10000000 pop rdx; pop rdi; pop rsi; add rsp, 0x20; ret
0x0008: 0x3 [arg2] rdx = 3
0x0010: 0x1 [arg0] rdi = 1
0x0018: 0x2 [arg1] rsi = 2
0x0020: b'iaaajaaa' <pad 0x20>
0x0028: b'kaaalaaa' <pad 0x18>
0x0030: b'maaanaaa' <pad 0x10>
0x0038: b'oaaapaaa' <pad 0x8>
0x0040: 0x10000008 target
0x0048: 0x10000001 pop rdi; pop rsi; add rsp, 0x20; ret
0x0050: 0x1 [arg0] rdi = 1
0x0058: b'waaaxaaa' <pad rsi>
0x0060: b'yaaazaab' <pad 0x20>
0x0068: b'baabcaab' <pad 0x18>
0x0070: b'daabeaab' <pad 0x10>
0x0078: b'faabgaab' <pad 0x8>
0x0080: 0x10000008 target
Pwntools will also filter out some bad instructions while setting the registers
( e.g. syscall, int 0x80... )
>>> assembly = 'syscall; pop rdx; pop rsi; ret ; pop rdi ; int 0x80; pop rsi; pop rdx; ret ; pop rdi ; ret'
>>> binary = ELF.from_assembly(assembly)
>>> rop = ROP(binary)
>>> rop.call(0xdeadbeef, [1, 2, 3])
>>> print(rop.dump())
0x0000: 0x1000000b pop rdi; ret
0x0008: 0x1 [arg0] rdi = 1
0x0010: 0x10000002 pop rdx; pop rsi; ret
0x0018: 0x3 [arg2] rdx = 3
0x0020: 0x2 [arg1] rsi = 2
0x0028: 0xdeadbeef
ROP + Sigreturn
-----------------------
In some cases, control of the desired register is not available.
However, if you have control of the stack, EAX, and can find a
`int 0x80` gadget, you can use sigreturn.
Even better, this happens automagically.
Our example binary will read some data onto the stack, and
not do anything else interesting.
>>> context.clear(arch='i386')
>>> c = constants
>>> assembly = 'read:' + shellcraft.read(c.STDIN_FILENO, 'esp', 1024)
>>> assembly += 'ret\n'
>>> assembly += 'pop eax; ret\n'
>>> assembly += 'int 0x80\n'
>>> assembly += 'binsh: .asciz "/bin/sh"'
>>> binary = ELF.from_assembly(assembly)
Let's create a ROP object and invoke the call.
>>> context.kernel = 'amd64'
>>> rop = ROP(binary)
>>> binsh = binary.symbols['binsh']
>>> rop.execve(binsh, 0, 0)
That's all there is to it.
>>> print(rop.dump())
0x0000: 0x1000000e pop eax; ret
0x0004: 0x77 [arg0] eax = SYS_sigreturn
0x0008: 0x1000000b int 0x80; ret
0x000c: 0x0 gs
0x0010: 0x0 fs
0x0014: 0x0 es
0x0018: 0x0 ds
0x001c: 0x0 edi
0x0020: 0x0 esi
0x0024: 0x0 ebp
0x0028: 0x0 esp
0x002c: 0x10000012 ebx = binsh
0x0030: 0x0 edx
0x0034: 0x0 ecx
0x0038: 0xb eax = SYS_execve
0x003c: 0x0 trapno
0x0040: 0x0 err
0x0044: 0x1000000b int 0x80; ret
0x0048: 0x23 cs
0x004c: 0x0 eflags
0x0050: 0x0 esp_at_signal
0x0054: 0x2b ss
0x0058: 0x0 fpstate
Let's try it out!
>>> p = process(binary.path)
>>> p.send(rop.chain())
>>> time.sleep(1)
>>> p.sendline(b'echo hello; exit')
>>> p.recvline()
b'hello\n'
"""
from __future__ import absolute_import
from __future__ import division
import collections
import copy
import hashlib
import itertools
import os
import re
import shutil
import six
import string
import struct
import sys
import tempfile
from pwnlib import abi
from pwnlib import constants
from pwnlib.context import LocalContext
from pwnlib.context import context
from pwnlib.elf import ELF
from pwnlib.log import getLogger
from pwnlib.rop import srop
from . import ret2dlresolve
from pwnlib.rop.call import AppendedArgument
from pwnlib.rop.call import Call
from pwnlib.rop.call import CurrentStackPointer
from pwnlib.rop.call import NextGadgetAddress
from pwnlib.rop.call import StackAdjustment
from pwnlib.rop.call import Unresolved
from pwnlib.rop.gadgets import Gadget
from pwnlib.util import lists
from pwnlib.util import packing
from pwnlib.util.cyclic import cyclic
from pwnlib.util.packing import pack
from pwnlib.util.misc import python_2_bytes_compatible
log = getLogger(__name__)
__all__ = ['ROP']
enums = Call, constants.Constant
try:
from enum import Enum
except ImportError:
pass
else:
enums += Enum,
class Padding(object):
"""
Placeholder for exactly one pointer-width of padding.
"""
def __init__(self, name='<pad>'):
self.name = name
def _slot_len(x):
if isinstance(x, six.integer_types+(Unresolved, Padding, Gadget)):
return context.bytes
else:
return len(packing.flat(x))
class DescriptiveStack(list):
"""
List of resolved ROP gadgets that correspond to the ROP calls that
the user has specified.
"""
#: Base address
address = 0
#: Dictionary of \`{address: [list of descriptions]}`
descriptions = {}
def __init__(self, address):
self.descriptions = collections.defaultdict(list)
self.address = address or 0
self._next_next = 0
self._next_last = 0
@property
def next(self):
for x in self[self._next_last:]:
self._next_next += _slot_len(x)
self._next_last = len(self)
return self.address + self._next_next
def describe(self, text, address = None):
if address is None:
address = self.next
self.descriptions[address] = text
def dump(self):
rv = []
addr = self.address
for i, data in enumerate(self):
off = None
line = '0x%04x:' % addr
if isinstance(data, (str, bytes)):
line += ' %16r' % data
elif isinstance(data, six.integer_types):
line += ' %#16x' % data
if self.address != 0 and self.address < data < self.next:
off = data - addr
else:
log.error("Don't know how to dump %r" % data)
desc = self.descriptions.get(addr, '')
if desc:
line += ' %s' % desc
if off is not None:
line += ' (+%#x)' % off
rv.append(line)
addr += _slot_len(data)
return '\n'.join(rv)
@python_2_bytes_compatible
class ROP(object):
r"""Class which simplifies the generation of ROP-chains.
Example:
.. code-block:: python
elf = ELF('ropasaurusrex')
rop = ROP(elf)
rop.read(0, elf.bss(0x80))
rop.dump()
# ['0x0000: 0x80482fc (read)',
# '0x0004: 0xdeadbeef',
# '0x0008: 0x0',
# '0x000c: 0x80496a8']
bytes(rop)
# '\xfc\x82\x04\x08\xef\xbe\xad\xde\x00\x00\x00\x00\xa8\x96\x04\x08'
>>> context.clear(arch = "i386", kernel = 'amd64')
>>> assembly = 'int 0x80; ret; add esp, 0x10; ret; pop eax; ret'
>>> e = ELF.from_assembly(assembly)
>>> e.symbols['funcname'] = e.entry + 0x1234
>>> r = ROP(e)
>>> r.funcname(1, 2)
>>> r.funcname(3)
>>> r.execve(4, 5, 6)
>>> print(r.dump())
0x0000: 0x10001234 funcname(1, 2)
0x0004: 0x10000003 <adjust @0x18> add esp, 0x10; ret
0x0008: 0x1 arg0
0x000c: 0x2 arg1
0x0010: b'eaaa' <pad>
0x0014: b'faaa' <pad>
0x0018: 0x10001234 funcname(3)
0x001c: 0x10000007 <adjust @0x24> pop eax; ret
0x0020: 0x3 arg0
0x0024: 0x10000007 pop eax; ret
0x0028: 0x77 [arg0] eax = SYS_sigreturn
0x002c: 0x10000000 int 0x80; ret
0x0030: 0x0 gs
0x0034: 0x0 fs
0x0038: 0x0 es
0x003c: 0x0 ds
0x0040: 0x0 edi
0x0044: 0x0 esi
0x0048: 0x0 ebp
0x004c: 0x0 esp
0x0050: 0x4 ebx
0x0054: 0x6 edx
0x0058: 0x5 ecx
0x005c: 0xb eax = SYS_execve
0x0060: 0x0 trapno
0x0064: 0x0 err
0x0068: 0x10000000 int 0x80; ret
0x006c: 0x23 cs
0x0070: 0x0 eflags
0x0074: 0x0 esp_at_signal
0x0078: 0x2b ss
0x007c: 0x0 fpstate
>>> r = ROP(e, 0x8048000)
>>> r.funcname(1, 2)
>>> r.funcname(3)
>>> r.execve(4, 5, 6)
>>> print(r.dump())
0x8048000: 0x10001234 funcname(1, 2)
0x8048004: 0x10000003 <adjust @0x8048018> add esp, 0x10; ret
0x8048008: 0x1 arg0
0x804800c: 0x2 arg1
0x8048010: b'eaaa' <pad>
0x8048014: b'faaa' <pad>
0x8048018: 0x10001234 funcname(3)
0x804801c: 0x10000007 <adjust @0x8048024> pop eax; ret
0x8048020: 0x3 arg0
0x8048024: 0x10000007 pop eax; ret
0x8048028: 0x77 [arg0] eax = SYS_sigreturn
0x804802c: 0x10000000 int 0x80; ret
0x8048030: 0x0 gs
0x8048034: 0x0 fs
0x8048038: 0x0 es
0x804803c: 0x0 ds
0x8048040: 0x0 edi
0x8048044: 0x0 esi
0x8048048: 0x0 ebp
0x804804c: 0x8048080 esp
0x8048050: 0x4 ebx
0x8048054: 0x6 edx
0x8048058: 0x5 ecx
0x804805c: 0xb eax = SYS_execve
0x8048060: 0x0 trapno
0x8048064: 0x0 err
0x8048068: 0x10000000 int 0x80; ret
0x804806c: 0x23 cs
0x8048070: 0x0 eflags
0x8048074: 0x0 esp_at_signal
0x8048078: 0x2b ss
0x804807c: 0x0 fpstate
>>> elf = ELF.from_assembly('ret')
>>> r = ROP(elf)
>>> r.ret.address == 0x10000000
True
>>> r = ROP(elf, badchars=b'\x00')
>>> r.gadgets == {}
True
>>> r.ret is None
True
"""
BAD_ATTRS = [
'trait_names', # ipython tab-complete
'download', # frequent typo
'upload', # frequent typo
]
X86_SUFFIXES = ['ax', 'bx', 'cx', 'dx', 'bp', 'sp', 'di', 'si',
'r8', 'r9', '10', '11', '12', '13', '14', '15']
def __init__(self, elfs, base = None, badchars = b'', **kwargs):
"""
Arguments:
elfs(list): List of :class:`.ELF` objects for mining
base(int): Stack address where the first byte of the ROP chain lies, if known.
badchars(str): Characters which should not appear in ROP gadget addresses.
"""
import ropgadget
# Permit singular ROP(elf) vs ROP([elf])
if isinstance(elfs, ELF):
elfs = [elfs]
elif isinstance(elfs, (bytes, six.text_type)):
elfs = [ELF(elfs)]
#: List of individual ROP gadgets, ROP calls, SROP frames, etc.
#: This is intended to be the highest-level abstraction that we can muster.
self._chain = []
#: List of ELF files which are available for mining gadgets
self.elfs = elfs
#: Stack address where the first byte of the ROP chain lies, if known.
self.base = base
#: Whether or not the ROP chain directly sets the stack pointer to a value
#: which is not contiguous
self.migrated = False
#: Characters which should not appear in ROP gadget addresses.
self._badchars = set(badchars)
self.__load()
@staticmethod
@LocalContext
def from_blob(blob, *a, **kw):
return ROP(ELF.from_bytes(blob, *a, **kw))
def setRegisters(self, registers):
"""
Returns an list of addresses/values which will set the specified register context.
Arguments:
registers(dict): Dictionary of ``{register name: value}``
Returns:
A list of tuples, ordering the stack.
Each tuple is in the form of ``(value, name)`` where ``value`` is either a
gadget address or literal value to go on the stack, and ``name`` is either
a string name or other item which can be "unresolved".
Note:
This is basically an implementation of the Set Cover Problem, which is
NP-hard. This means that we will take polynomial time N**2, where N is
the number of gadgets. We can reduce runtime by discarding useless and
inferior gadgets ahead of time.
"""
if not registers:
return []
regset = set(registers)
bad_instructions = set(('syscall', 'sysenter', 'int 0x80'))
# Collect all gadgets which use these registers
# Also collect the "best" gadget for each combination of registers
gadgets = []
best_gadgets = {}
for gadget in self.gadgets.values():
# Do not use gadgets which doesn't end with 'ret'
if gadget.insns[-1] != 'ret':
continue
# Do not use gadgets which contain 'syscall' or 'int'
if set(gadget.insns) & bad_instructions:
continue
touched = tuple(regset & set(gadget.regs))
if not touched:
continue
old = best_gadgets.get(touched, gadget)
# if we have a new gadget for the touched registers, choose it
# if the new gadget requires less stack space, choose it
# if both gadgets require same stack space, choose the one with less instructions
if (old is gadget) \
or (old.move > gadget.move) \
or (old.move == gadget.move and len(old.insns) > len(gadget.insns)):
best_gadgets[touched] = gadget
winner = None
budget = 999999999
for num_gadgets in range(len(registers)):
for combo in itertools.combinations(sorted(best_gadgets.values(), key=repr, reverse=True), 1+num_gadgets):
# Is this better than what we can already do?
cost = sum((g.move for g in combo))
if cost > budget:
continue
# Does it hit all of the registers we want?
coverage = set(sum((g.regs for g in combo), [])) & regset
if coverage != regset:
continue
# It is better than what we had, and hits all of the registers.
winner = combo
budget = cost
if not winner:
log.error("Could not satisfy setRegisters(%r)", registers)
# We have our set of "winner" gadgets, let's build a stack!
stack = []
for gadget in winner:
moved = context.bytes # Account for the gadget itself
goodregs = set(gadget.regs) & regset
name = ",".join(goodregs)
stack.append((gadget.address, gadget))
for r in gadget.regs:
if isinstance(r, str):
if r in registers:
stack.append((registers[r], r))
else:
stack.append((Padding('<pad %s>' % r), r))
moved += context.bytes
continue
for slot in range(moved, moved + r, context.bytes):
left = gadget.move - slot
stack.append((Padding('<pad %#x>' % left), 'stack padding'))
moved += context.bytes
assert moved == gadget.move
return stack
def __call__(self, *args, **kwargs):
"""Set the given register(s)' by constructing a rop chain.
This is a thin wrapper around :meth:`setRegisters` which
actually executes the rop chain.
You can call this :class:`ROP` instance and provide keyword arguments,
or a dictionary.
Arguments:
regs(dict): Mapping of registers to values.
Can instead provide ``kwargs``.
>>> context.clear(arch='amd64')
>>> assembly = 'pop rax; pop rdi; pop rsi; ret; pop rax; ret;'
>>> e = ELF.from_assembly(assembly)
>>> r = ROP(e)
>>> r(rax=0xdead, rdi=0xbeef, rsi=0xcafe)
>>> print(r.dump())
0x0000: 0x10000000 pop rax; pop rdi; pop rsi; ret
0x0008: 0xdead
0x0010: 0xbeef
0x0018: 0xcafe
>>> r = ROP(e)
>>> r({'rax': 0xdead, 'rdi': 0xbeef, 'rsi': 0xcafe})
>>> print(r.dump())
0x0000: 0x10000000 pop rax; pop rdi; pop rsi; ret
0x0008: 0xdead
0x0010: 0xbeef
0x0018: 0xcafe
"""
if len(args) == 1 and isinstance(args[0], dict):
for value, name in self.setRegisters(args[0]):
if isinstance(name, Gadget):
self.raw(name)
else:
self.raw(value)
else:
self(kwargs)
def resolve(self, resolvable):
"""Resolves a symbol to an address
Arguments:
resolvable(str,int): Thing to convert into an address
Returns:
int containing address of 'resolvable', or None
"""
if isinstance(resolvable, str):
for elf in self.elfs:
if resolvable in elf.symbols:
return elf.symbols[resolvable]
if isinstance(resolvable, six.integer_types):
return resolvable
def unresolve(self, value):
"""Inverts 'resolve'. Given an address, it attempts to find a symbol
for it in the loaded ELF files. If none is found, it searches all
known gadgets, and returns the disassembly
Arguments:
value(int): Address to look up
Returns:
String containing the symbol name for the address, disassembly for a gadget
(if there's one at that address), or an empty string.
"""
for elf in self.elfs:
for name, addr in elf.symbols.items():
if addr == value:
return name
if value in self.gadgets:
return '; '.join(self.gadgets[value].insns)
return ''
def generatePadding(self, offset, count):
"""
Generates padding to be inserted into the ROP stack.
>>> context.clear(arch='i386')
>>> rop = ROP([])
>>> val = rop.generatePadding(5,15)
>>> cyclic_find(val[:4])
5
>>> len(val)
15
>>> rop.generatePadding(0,0)
b''
"""
# Ensure we don't generate a cyclic pattern which contains badchars
alphabet = b''.join(packing.p8(c) for c in bytearray(string.ascii_lowercase.encode()) if c not in self._badchars)
if count:
return cyclic(offset + count, alphabet=alphabet)[-count:]
return b''
def describe(self, object):
"""
Return a description for an object in the ROP stack
"""
if isinstance(object, enums):
return str(object)
if isinstance(object, six.integer_types):
return self.unresolve(object)
if isinstance(object, (bytes, six.text_type)):
return repr(object)
if isinstance(object, Gadget):
return '; '.join(object.insns)
def build(self, base = None, description = None):
"""
Construct the ROP chain into a list of elements which can be passed
to :func:`.flat`.
Arguments:
base(int):
The base address to build the rop-chain from. Defaults to
:attr:`base`.
description(dict):
Optional output argument, which will gets a mapping of
``address: description`` for each address on the stack,
starting at ``base``.
"""
if base is None:
base = self.base or 0
stack = DescriptiveStack(base)
chain = self._chain
#
# First pass
#
# Get everything onto the stack and save as much descriptive information
# as possible.
#
# The only replacements performed are to add stack adjustment gadgets
# (to move SP to the next gadget after a Call) and NextGadgetAddress,
# which can only be calculated in this pass.
#
iterable = enumerate(chain)
for idx, slot in iterable:
remaining = len(chain) - 1 - idx
address = stack.next
# Integers can just be added.
# Do our best to find out what the address is.
if isinstance(slot, six.integer_types):
stack.describe(self.describe(slot))
stack.append(slot)
# Byte blobs can also be added, however they must be
# broken down into pointer-width blobs.
elif isinstance(slot, (bytes, six.text_type)):
stack.describe(self.describe(slot))
if not isinstance(slot, bytes):
slot = slot.encode()
for chunk in lists.group(context.bytes, slot):
stack.append(chunk)
elif isinstance(slot, srop.SigreturnFrame):
stack.describe("Sigreturn Frame")
if slot.sp in (0, None) and self.base:
slot.sp = stack.next + len(slot)
registers = [slot.registers[i] for i in sorted(slot.registers.keys())]
for register in registers:
value = slot[register]
description = self.describe(value)
if description:
stack.describe('%s = %s' % (register, description))
else:
stack.describe('%s' % (register))
stack.append(value)
elif isinstance(slot, Call):
stack.describe(self.describe(slot))
registers = slot.register_arguments
for value, name in self.setRegisters(registers):
if name in registers:
index = slot.abi.register_arguments.index(name)
description = self.describe(value) or repr(value)
stack.describe('[arg%d] %s = %s' % (index, name, description))
elif isinstance(name, Gadget):
stack.describe('; '.join(name.insns))
elif isinstance(name, str):
stack.describe(name)
stack.append(value)
if address != stack.next:
stack.describe(slot.name)
stack.append(slot.target)
# For any remaining arguments, put them on the stack
stackArguments = slot.stack_arguments
for argument in slot.stack_arguments_before:
stack.describe("[dlresolve index]")
stack.append(argument)
nextGadgetAddr = stack.next + (context.bytes * len(stackArguments))
# Generally, stack-based arguments assume there's a return
# address on the stack.
#
# We need to at least put padding there so that things line up
# properly, but likely also need to adjust the stack past the
# arguments.
if slot.abi.returns:
# Save off the address of the next gadget
if remaining or stackArguments:
nextGadgetAddr = stack.next
# If there were arguments on the stack, we need to stick something
# in the slot where the return address goes.
if len(stackArguments) > 0:
if remaining and (remaining > 1 or Call.is_flat(chain[-1])):
fix_size = (1 + len(stackArguments))
fix_bytes = fix_size * context.bytes
adjust = self.search(move = fix_bytes)
if not adjust:
log.error("Could not find gadget to adjust stack by %#x bytes" % fix_bytes)
nextGadgetAddr += adjust.move
stack.describe('<adjust @%#x> %s' % (nextGadgetAddr, self.describe(adjust)))
stack.append(adjust.address)
for pad in range(fix_bytes, adjust.move, context.bytes):
stackArguments.append(Padding())
# We could not find a proper "adjust" gadget, but also didn't need one.
elif remaining:
_, nxslot = next(iterable)
stack.describe(self.describe(nxslot))
if isinstance(nxslot, Call):
stack.append(nxslot.target)
else:
stack.append(nxslot)
else:
stack.append(Padding("<return address>"))
for i, argument in enumerate(stackArguments):
if isinstance(argument, NextGadgetAddress):
stack.describe("<next gadget>")
stack.append(nextGadgetAddr)
else:
description = self.describe(argument) or 'arg%i' % (i + len(registers))
stack.describe(description)
stack.append(argument)