-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTrain_model_frontend_all.py
executable file
·738 lines (630 loc) · 26.3 KB
/
Train_model_frontend_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
"""This is the frontend interface for training
base class: inherited by other Train_model_*.py
Author: You-Yi Jau, Rui Zhu
Date: 2019/12/12
"""
import numpy as np
import torch
# from torch.autograd import Variable
# import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from torch_poly_lr_decay import PolynomialLRDecay
from tqdm import tqdm
from utils.loader import dataLoader, modelLoader, pretrainedLoader
import logging
from utils.tools import dict_update
from utils.utils import labels2Dto3D, flattenDetection, labels2Dto3D_flattened
from utils.utils import pltImshow, saveImg
from utils.utils import precisionRecall_torch
from utils.utils import save_checkpoint
from utils import coco_labels
from pathlib import Path
import models.senner_models
# def thd_img(img, thd=0.015):
# """
# thresholding the image.
# :param img:
# :param thd:
# :return:
# """
# img[img < thd] = 0
# img[img >= thd] = 1
# return img
# def toNumpy(tensor):
# return tensor.detach().cpu().numpy()
# def img_overlap(img_r, img_g, img_gray): # img_b repeat
# img = np.concatenate((img_gray, img_gray, img_gray), axis=0)
# img[0, :, :] += img_r[0, :, :]
# img[1, :, :] += img_g[0, :, :]
# img[img > 1] = 1
# img[img < 0] = 0
# return img
class Train_model_frontend_all(object):
"""
# This is the base class for training classes. Wrap pytorch net to help training process.
"""
default_config = {
"train_iter": 170000,
"save_interval": 2000,
"tensorboard_interval": 200,
"model": {"subpixel": {"enable": False}},
}
def __init__(self, config, save_path=Path("."), device="cpu", verbose=False):
"""
## default dimension:
heatmap: torch (batch_size, H, W, 1)
dense_desc: torch (batch_size, H, W, 256)
pts: [batch_size, np (N, 3)]
desc: [batch_size, np(256, N)]
:param config:
dense_loss, sparse_loss (default)
:param save_path:
:param device:
:param verbose:
"""
# config
print("Load Train_model_frontend!!")
self.config = self.default_config
self.config = dict_update(self.config, config)
# change iter variables to match mimic of larger batch size
r = self.config["model"]["real_batch_size"] // self.config["model"]["batch_size"]
self.config["train_iter"] *= r
self.config["validation_interval"] *= r
self.config["tensorboard_interval"] *= r
self.config["save_interval"] *= r
print("check config!!", self.config)
# init parameters
self.device = device
self.save_path = save_path
self._train = True
self._eval = True
self.cell_size = 8
self.subpixel = False
self.loss = 0
self.max_iter = self.config["train_iter"]
if self.config["model"]["dense_loss"]["enable"]:
## original superpoint paper uses dense loss
print("use dense_loss!")
from utils.utils import descriptor_loss
self.desc_params = self.config["model"]["dense_loss"]["params"]
self.descriptor_loss = descriptor_loss
self.desc_loss_type = "dense"
elif self.config["model"]["sparse_loss"]["enable"]:
## our sparse loss has similar performace, more efficient
print("use sparse_loss!")
self.desc_params = self.config["model"]["sparse_loss"]["params"]
from utils.loss_functions.sparse_loss import batch_descriptor_loss_sparse
self.descriptor_loss = batch_descriptor_loss_sparse
self.desc_loss_type = "sparse"
if self.config["model"]["subpixel"]["enable"]:
## deprecated: only for testing subpixel prediction
self.subpixel = True
def get_func(path, name):
logging.info("=> from %s import %s", path, name)
mod = __import__("{}".format(path), fromlist=[""])
return getattr(mod, name)
self.subpixel_loss_func = get_func("utils.losses", self.config["model"]["subpixel"]["loss_func"])
# load model
# self.net = self.loadModel(*config['model'])
self.printImportantConfig()
pass
def printImportantConfig(self):
"""
# print important configs
:return:
"""
print("=" * 10, " check!!! ", "=" * 10)
print("learning_rate: ", self.config["model"]["learning_rate"])
print("lambda_loss: ", self.config["model"]["lambda_loss"])
print("detection_threshold: ", self.config["model"]["detection_threshold"])
print("real_batch_size: ", self.config["model"]["real_batch_size"])
print("batch_size: ", self.config["model"]["batch_size"])
if self.config["data"]["semantic"]:
print("seg_loss: ", self.config["model"]["seg_head"]["loss"])
print("=" * 10, " descriptor: ", self.desc_loss_type, "=" * 10)
for item in list(self.desc_params):
print(item, ": ", self.desc_params[item])
print("=" * 32)
pass
def dataParallel(self):
"""
put network and optimizer to multiple gpus
:return:
"""
print("=== Let's use", torch.cuda.device_count(), "GPUs!")
# self.net = nn.DataParallel(self.net)
self.optimizer = self.adamOptim(self.net, lr=self.config["model"]["learning_rate"])
self.optimizer.zero_grad()
# self.seg_optimizer = self.SGDOptim(self.net, lr=self.config["model"]["learning_rate"])
pass
def adamOptim(self, net, lr):
"""
initiate adam optimizer
:param net: network structure
:param lr: learning rate
:return:
"""
print("adam optimizer")
import torch.optim as optim
# optimizer = optim.Adam(
# list(net.parameters()) + list(self.multi_task_loss.parameters()), lr=lr, betas=(0.9, 0.999), weight_decay=1e-4
# )
optimizer = optim.Adam(list(net.parameters()) + list(self.multi_task_loss.parameters()), lr=lr, betas=(0.9, 0.999))
return optimizer
# def SGDOptim(self, net, lr):
# """
# initiate SGD optimizer
# :param net: network structure
# :param lr: learning rate
# :return:
# """
# print("SGD Optimizer")
# import torch.optim as optim
# optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
# return optimizer
# TODO change checkpoint save
def loadModel(self):
"""
load model from name and params
init or load optimizer
:return:
"""
model = self.config["model"]["name"]
params = self.config["model"]["params"]
print("model: ", model)
net = modelLoader(model=model, **params).to(self.device)
logging.info("=> setting adam solver")
logging.info("=> setting SGD solver")
optimizer = self.adamOptim(net, lr=self.config["model"]["learning_rate"])
# TODO: config otimizers for SGD solver (maybe ?)
# optimizer_sem = self.SGDOptim(net, lr=self.config["model"]["learning_rate"])
n_iter = 0
## new model or load pretrained
if self.config["retrain"] == True:
logging.info("New model")
pass
else:
try:
path = self.config["pretrained"]
mode = "" if path[-4:] == ".pth" else "full" # the suffix is '.pth' or 'tar.gz'
logging.info("load pretrained model from: %s", path)
net, optimizer, n_iter = pretrainedLoader(net, optimizer, n_iter, path, mode=mode, full_path=True)
logging.info("successfully load pretrained model from: %s", path)
except: # sener like model - TODO: model in config parameter
print("loading pretrained model from senner")
checkpoint = torch.load(
"logs/superpoint_coco_2017_ang_pret_v2/checkpoints/superPointNet_3_checkpoint.pth.tar",
map_location=lambda storage, loc: storage,
)
logging.info("Transfering weights from sener like model to: something")
net = net.to(self.device)
sener_model = models.senner_models.get_senner_model(self.config, self.device, False)
for t in sener_model:
sener_model[t].load_state_dict(checkpoint["model_" + t])
net.load_state_dict(sener_model[t].state_dict(), strict=False)
# for name, parameter in sener_model[t].named_parameters():
# print(name)
# name_split = name.split(".")[0]
# state_dict = getattr(sener_model[t], name_split).state_dict()
# # getattr(net, name_split).load_state_dict(state_dict)
def setIter(n_iter):
if self.config["reset_iter"]:
logging.info("reset iterations to 0")
n_iter = 0
return n_iter
self.net = net
self.optimizer = optimizer
# self.optimizer_sem = optimizer_sem
self.n_iter = setIter(n_iter)
self.scheduler = PolynomialLRDecay(self.optimizer, max_decay_steps=self.max_iter, end_learning_rate=0.001, power=2.0)
pass
@property
def writer(self):
"""
# writer for tensorboard
:return:
"""
# print("get writer")
return self._writer
@writer.setter
def writer(self, writer):
print("set writer")
self._writer = writer
@property
def train_loader(self):
"""
loader for dataset, set from outside
:return:
"""
print("get dataloader")
return self._train_loader
@train_loader.setter
def train_loader(self, loader):
print("set train loader")
self._train_loader = loader
@property
def val_loader(self):
print("get dataloader")
return self._val_loader
@val_loader.setter
def val_loader(self, loader):
print("set train loader")
self._val_loader = loader
def train(self, **options):
"""
# outer loop for training
# control training and validation pace
# stop when reaching max iterations
:param options:
:return:
"""
# training info
logging.info("n_iter: %d", self.n_iter)
logging.info("max_iter: %d", self.max_iter)
running_losses = []
epoch = 0
# Train one epoch
while self.n_iter < self.max_iter:
print("epoch: ", epoch)
epoch += 1
for i, sample_train in tqdm(enumerate(self.train_loader)):
# train one sample
loss_out = self.train_val_sample(sample_train, self.n_iter, True)
self.n_iter += 1
running_losses.append(loss_out)
# run validation
if self._eval and self.n_iter % self.config["validation_interval"] == 0:
logging.info("====== Validating...")
for j, sample_val in enumerate(self.val_loader):
self.train_val_sample(sample_val, self.n_iter + j, False)
if j > self.config.get("validation_size", 3):
break
# save model
if self.n_iter % self.config["save_interval"] == 0:
logging.info(
"save model: every %d interval, current iteration: %d",
self.config["save_interval"],
self.n_iter,
)
self.saveModel()
# ending condition
if self.n_iter > self.max_iter:
# end training
logging.info("End training: %d", self.n_iter)
break
pass
def getLabels(self, labels_2D, cell_size, device="cpu"):
"""
# transform 2D labels to 3D shape for training
:param labels_2D:
:param cell_size:
:param device:
:return:
"""
labels3D_flattened = labels2Dto3D_flattened(labels_2D.to(device), cell_size=cell_size)
labels3D_in_loss = labels3D_flattened
return labels3D_in_loss
def getMasks(self, mask_2D, cell_size, device="cpu"):
"""
# 2D mask is constructed into 3D (Hc, Wc) space for training
:param mask_2D:
tensor [batch, 1, H, W]
:param cell_size:
8 (default)
:param device:
:return:
flattened 3D mask for training
"""
mask_3D = labels2Dto3D(mask_2D.to(device), cell_size=cell_size, add_dustbin=False).float()
mask_3D_flattened = torch.prod(mask_3D, 1)
return mask_3D_flattened
def get_loss(self, semi, labels3D_in_loss, mask_3D_flattened, device="cpu"):
"""
## deprecated: loss function
:param semi:
:param labels3D_in_loss:
:param mask_3D_flattened:
:param device:
:return:
"""
loss_func = nn.CrossEntropyLoss(reduce=False).to(device)
# if self.config['data']['gaussian_label']['enable']:
# loss = loss_func_BCE(nn.functional.softmax(semi, dim=1), labels3D_in_loss)
# loss = (loss.sum(dim=1) * mask_3D_flattened).sum()
# else:
loss = loss_func(semi, labels3D_in_loss)
loss = (loss * mask_3D_flattened).sum()
loss = loss / (mask_3D_flattened.sum() + 1e-10)
return loss
# def get_sem_loss(self, pred, label, device="cpu"):
# """
# ## deprecated: loss function
# :param pred:
# :param label:
# :param device:
# :return:
# """
# # device = "cpu"
# # print("device: %s" % device)
# loss_func = nn.CrossEntropyLoss(ignore_index=-1).to(device)
# loss = loss_func(pred, label.to(device))
# return loss
def saveModel(self):
"""
# save checkpoint for resuming training
:return:
"""
# model_state_dict = self.net.module.state_dict()
model_state_dict = self.net.state_dict()
save_checkpoint(
self.save_path,
{
"n_iter": self.n_iter + 1,
"model_state_dict": model_state_dict,
"optimizer_state_dict": self.optimizer.state_dict(),
"loss": self.loss,
},
self.n_iter,
)
pass
def add_single_image_to_tb(self, task, img_tensor, n_iter, name="img"):
"""
# add image to tensorboard for visualization
:param task:
:param img_tensor:
:param n_iter:
:param name:
:return:
"""
if img_tensor.dim() == 4:
for i in range(min(img_tensor.shape[0], 5)):
self.writer.add_image(task + "-" + name + "/%d" % i, img_tensor[i, :, :, :], n_iter)
else:
self.writer.add_image(task + "-" + name, img_tensor[:, :, :], n_iter)
# tensorboard
def addImg2tensorboard(
self,
img,
labels_2D,
semi,
img_warp=None,
labels_warp_2D=None,
mask_warp_2D=None,
semi_warp=None,
mask_3D_flattened=None,
task="training",
):
"""
# deprecated: add images to tensorboard
:param img:
:param labels_2D:
:param semi:
:param img_warp:
:param labels_warp_2D:
:param mask_warp_2D:
:param semi_warp:
:param mask_3D_flattened:
:param task:
:return:
"""
# print("add images to tensorboard")
n_iter = self.n_iter
semi_flat = flattenDetection(semi[0, :, :, :])
semi_warp_flat = flattenDetection(semi_warp[0, :, :, :])
thd = self.config["model"]["detection_threshold"]
semi_thd = thd_img(semi_flat, thd=thd)
semi_warp_thd = thd_img(semi_warp_flat, thd=thd)
result_overlap = img_overlap(toNumpy(labels_2D[0, :, :, :]), toNumpy(semi_thd), toNumpy(img[0, :, :, :]))
self.writer.add_image(task + "-detector_output_thd_overlay", result_overlap, n_iter)
saveImg(result_overlap.transpose([1, 2, 0])[..., [2, 1, 0]] * 255, "test_0.png") # rgb to bgr * 255
result_overlap = img_overlap(
toNumpy(labels_warp_2D[0, :, :, :]),
toNumpy(semi_warp_thd),
toNumpy(img_warp[0, :, :, :]),
)
self.writer.add_image(task + "-warp_detector_output_thd_overlay", result_overlap, n_iter)
saveImg(result_overlap.transpose([1, 2, 0])[..., [2, 1, 0]] * 255, "test_1.png") # rgb to bgr * 255
mask_overlap = img_overlap(
toNumpy(1 - mask_warp_2D[0, :, :, :]) / 2,
np.zeros_like(toNumpy(img_warp[0, :, :, :])),
toNumpy(img_warp[0, :, :, :]),
)
# writer.add_image(task + '_mask_valid_first_layer', mask_warp[0, :, :, :], n_iter)
# writer.add_image(task + '_mask_valid_last_layer', mask_warp[-1, :, :, :], n_iter)
##### print to check
# print("mask_2D shape: ", mask_warp_2D.shape)
# print("mask_3D_flattened shape: ", mask_3D_flattened.shape)
for i in range(self.batch_size):
if i < 5:
self.writer.add_image(task + "-mask_warp_origin", mask_warp_2D[i, :, :, :], n_iter)
self.writer.add_image(task + "-mask_warp_3D_flattened", mask_3D_flattened[i, :, :], n_iter)
# self.writer.add_image(task + '-mask_warp_origin-1', mask_warp_2D[1, :, :, :], n_iter)
# self.writer.add_image(task + '-mask_warp_3D_flattened-1', mask_3D_flattened[1, :, :], n_iter)
self.writer.add_image(task + "-mask_warp_overlay", mask_overlap, n_iter)
def tb_scalar_dict(self, losses, task="training"):
"""
# add scalar dictionary to tensorboard
:param losses:
:param task:
:return:
"""
for element in list(losses):
self.writer.add_scalar(task + "-" + element, losses[element], self.n_iter // self.r)
# print (task, '-', element, ": ", losses[element].item())
def tb_images_dict(self, task, tb_imgs, max_img=5):
"""
# add image dictionary to tensorboard
:param task:
str (train, val)
:param tb_imgs:
:param max_img:
int - number of images
:return:
"""
if self.config["semantic"]:
N, C, H, W = tb_imgs["sem_pred"].shape
# print("tb_imgs[sem_pred].shape:", tb_imgs["sem_pred"].shape)
sem_pred = np.zeros((N, 1, H, W))
sem_pred[:, 0, :, :] = np.argmax(tb_imgs["sem_pred"], axis=1)
warp_sem_pred = np.zeros((N, 1, H, W))
warp_sem_pred[:, 0, :, :] = np.argmax(tb_imgs["warp_sem_pred"], axis=1)
tb_imgs.update({"sem_pred": sem_pred, "warp_sem_pred": warp_sem_pred})
for element in list(tb_imgs):
for idx in range(tb_imgs[element].shape[0]):
if idx >= max_img:
break
# print(f"element: {element}")
self.writer.add_image(
task + "-" + element + "/%d" % idx,
tb_imgs[element][idx, ...],
self.n_iter // self.r,
)
def tb_hist_dict(self, task, tb_dict):
for element in list(tb_dict):
self.writer.add_histogram(task + "-" + element, tb_dict[element], self.n_iter // self.r)
pass
def printLosses(self, losses, task="training"):
"""
# print loss for tracking training
:param losses:
:param task:
:return:
"""
for element in list(losses):
# print ('add to tb: ', element)
print(task, "-", element, ": ", losses[element].item())
def add2tensorboard_nms(self, img, labels_2D, semi, task="training", batch_size=1):
"""
# deprecated:
:param img:
:param labels_2D:
:param semi:
:param task:
:param batch_size:
:return:
"""
from utils.utils import getPtsFromHeatmap
from utils.utils import box_nms
boxNms = False
n_iter = self.n_iter // self.r
nms_dist = self.config["model"]["nms"]
conf_thresh = self.config["model"]["detection_threshold"]
# print("nms_dist: ", nms_dist)
precision_recall_list = []
precision_recall_boxnms_list = []
for idx in range(batch_size):
semi_flat_tensor = flattenDetection(semi[idx, :, :, :]).detach()
semi_flat = toNumpy(semi_flat_tensor)
semi_thd = np.squeeze(semi_flat, 0)
pts_nms = getPtsFromHeatmap(semi_thd, conf_thresh, nms_dist)
semi_thd_nms_sample = np.zeros_like(semi_thd)
semi_thd_nms_sample[pts_nms[1, :].astype(np.int), pts_nms[0, :].astype(np.int)] = 1
label_sample = torch.squeeze(labels_2D[idx, :, :, :])
# pts_nms = getPtsFromHeatmap(label_sample.numpy(), conf_thresh, nms_dist)
# label_sample_rms_sample = np.zeros_like(label_sample.numpy())
# label_sample_rms_sample[pts_nms[1, :].astype(np.int), pts_nms[0, :].astype(np.int)] = 1
label_sample_nms_sample = label_sample
if idx < 5:
result_overlap = img_overlap(
np.expand_dims(label_sample_nms_sample, 0),
np.expand_dims(semi_thd_nms_sample, 0),
toNumpy(img[idx, :, :, :]),
)
self.writer.add_image(
task + "-detector_output_thd_overlay-NMS" + "/%d" % idx,
result_overlap,
n_iter,
)
assert semi_thd_nms_sample.shape == label_sample_nms_sample.size()
precision_recall = precisionRecall_torch(torch.from_numpy(semi_thd_nms_sample), label_sample_nms_sample)
precision_recall_list.append(precision_recall)
if boxNms:
semi_flat_tensor_nms = box_nms(semi_flat_tensor.squeeze(), nms_dist, min_prob=conf_thresh).cpu()
semi_flat_tensor_nms = (semi_flat_tensor_nms >= conf_thresh).float()
if idx < 5:
result_overlap = img_overlap(
np.expand_dims(label_sample_nms_sample, 0),
semi_flat_tensor_nms.numpy()[np.newaxis, :, :],
toNumpy(img[idx, :, :, :]),
)
self.writer.add_image(
task + "-detector_output_thd_overlay-boxNMS" + "/%d" % idx,
result_overlap,
n_iter,
)
precision_recall_boxnms = precisionRecall_torch(semi_flat_tensor_nms, label_sample_nms_sample)
precision_recall_boxnms_list.append(precision_recall_boxnms)
precision = np.mean([precision_recall["precision"] for precision_recall in precision_recall_list])
recall = np.mean([precision_recall["recall"] for precision_recall in precision_recall_list])
self.writer.add_scalar(task + "-precision_nms", precision, n_iter)
self.writer.add_scalar(task + "-recall_nms", recall, n_iter)
print("-- [%s-%d-fast NMS] precision: %.4f, recall: %.4f" % (task, n_iter, precision, recall))
if boxNms:
precision = np.mean([precision_recall["precision"] for precision_recall in precision_recall_boxnms_list])
recall = np.mean([precision_recall["recall"] for precision_recall in precision_recall_boxnms_list])
self.writer.add_scalar(task + "-precision_boxnms", precision, n_iter)
self.writer.add_scalar(task + "-recall_boxnms", recall, n_iter)
print("-- [%s-%d-boxNMS] precision: %.4f, recall: %.4f" % (task, n_iter, precision, recall))
def get_heatmap(self, semi, det_loss_type="softmax"):
if det_loss_type == "l2":
heatmap = self.flatten_64to1(semi)
else:
heatmap = flattenDetection(semi)
return heatmap
######## static methods ########
@staticmethod
def input_to_imgDict(sample, tb_images_dict):
# for e in list(sample):
# print("sample[e]", sample[e].shape)
# if (sample[e]).dim() == 4:
# tb_images_dict[e] = sample[e]
for e in list(sample):
element = sample[e]
if type(element) is torch.Tensor:
if element.dim() == 4:
tb_images_dict[e] = element
# print("shape of ", i, " ", element.shape)
return tb_images_dict
@staticmethod
def interpolate_to_dense(coarse_desc, cell_size=8):
dense_desc = nn.functional.interpolate(coarse_desc, scale_factor=(cell_size, cell_size), mode="bilinear")
# norm the descriptor
def norm_desc(desc):
dn = torch.norm(desc, p=2, dim=1) # Compute the norm.
desc = desc.div(torch.unsqueeze(dn, 1)) # Divide by norm to normalize.
return desc
dense_desc = norm_desc(dense_desc)
return dense_desc
if __name__ == "__main__":
# load config
# filename = "configs/superpoint_coco_test.yaml"
filename = "configs/superpoint_coco_train_wsem_heatmap.yaml"
import yaml
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_tensor_type(torch.FloatTensor)
with open(filename, "r") as f:
config = yaml.load(f)
from utils.loader import dataLoader as dataLoader
# data = dataLoader(config, dataset='hpatches')
task = config["data"]["dataset"]
data = dataLoader(config, dataset=task, warp_input=True)
# test_set, test_loader = data['test_set'], data['test_loader']
train_loader, val_loader = data["train_loader"], data["val_loader"]
# model_fe = Train_model_frontend(config)
# print('==> Successfully loaded pre-trained network.')
train_agent = Train_model_frontend(config, device=device)
train_agent.train_loader = train_loader
# train_agent.val_loader = val_loader
train_agent.loadModel()
train_agent.dataParallel()
train_agent.train()
# epoch += 1
try:
model_fe.train()
# catch exception
except KeyboardInterrupt:
logging.info("ctrl + c is pressed. save model")
# is_best = True