Skip to content

Latest commit

 

History

History
64 lines (50 loc) · 2.21 KB

README.md

File metadata and controls

64 lines (50 loc) · 2.21 KB

caffe

caffe with some things for my experiment(class classification with clickture data)
这是一个为了完成我的实验,而添加过一些loss层,小工具和代码的caffe,具体添加的东西我会一项一项加上来介绍:


Cosine Loss:

the objective function is definede as:
Cosine Loss的目标函数定义如下:

Image text


example/vgg:

VGG19 layer and solver(include ordinary and fixed)
vgg19 层的模型结构和solver文件,有原版和论文作者修改过的


tools:

1.make_imagenet_mean:
compute mean
计算均值文件

  1. meantonpy:
    covert .binaryproto to .npy for predicting
    将mean文件转化为npy格式,python调用预测时需要用

3.predict:
input a picture and outpu classification
输入图片并输出分类结果


tools/data:

  1. HDF5 and LMDB
    to creat lmdb/hdf5 files:
    生成LMDB/HDF5的文件,其中HDF5为了保证每个文件小于2G,每3000张图片生成一个HDF5文件
    LMDB中,一个是train_val生成,一个只生成train

  2. random:
    load filename.txt type.txt wordweight.txt for shuffling
    读取文件名 种类标签和点击特征文件,随机生成打乱的文件

3.copyselpic:
read txt and copy selected picutre to objective file
读取txt文件将选中的图片文件拷贝到指定目录

4.selectpicture:
select picture by click times and possibility
通过预测的可能性和点击量选择图片


tools/word:

  1. tokenize:
    load queryname.txt query_clickcout.txt to creat word.txt (word sorted by click times)
    读取词组名 词组点击次数文件,生成词文件,按照词的点击量排序

  2. tf-idf:
    to create tf-idf file
    读取每张图片的非空词组点击次数文件(行号是图片的索引,每行格式为:query索引 点击次数),词组名文件,选出的词组文件。 生成每张图片的词频文件,然后读取词频文件,生成每张图片的tf-idf文件。

  3. createquerymatrix:
    createquerymatrix
    通过被选中的图片txt生成词组点击矩阵和文件名