-
Notifications
You must be signed in to change notification settings - Fork 12
/
acr_uniformity.py
135 lines (101 loc) · 5.41 KB
/
acr_uniformity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
ACR Uniformity
https://www.acraccreditation.org/-/media/acraccreditation/documents/mri/largephantomguidance.pdf
Calculates the percentage integral uniformity for slice 7 of the ACR phantom.
This script calculates the percentage integral uniformity in accordance with the ACR Guidance.
This is done by first defining a large 200cm2 ROI before placing 1cm2 ROIs at every pixel within
the large ROI. At each point, the mean of the 1cm2 ROI is calculated. The ROIs with the maximum and
minimum mean value are used to calculate the integral uniformity. The results are also visualised.
Created by Yassine Azma
13/01/2022
"""
import sys
import traceback
import os
import numpy as np
from hazenlib.HazenTask import HazenTask
from hazenlib.ACRObject import ACRObject
class ACRUniformity(HazenTask):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.ACR_obj = None
def run(self) -> dict:
results = {}
self.ACR_obj = ACRObject(self.data)
uniformity_dcm = self.ACR_obj.dcm[6]
try:
result = self.get_integral_uniformity(uniformity_dcm)
results[self.key(uniformity_dcm)] = result
except Exception as e:
print(
f"Could not calculate the percent integral uniformity for {self.key(uniformity_dcm)} because of : {e}")
traceback.print_exc(file=sys.stdout)
# only return reports if requested
if self.report:
results['reports'] = {'images': self.report_files}
return results
def get_integral_uniformity(self, dcm):
# Calculate the integral uniformity in accordance with ACR guidance.
img = dcm.pixel_array
res = dcm.PixelSpacing # In-plane resolution from metadata
r_large = np.ceil(80 / res[0]).astype(int) # Required pixel radius to produce ~200cm2 ROI
r_small = np.ceil(np.sqrt(100 / np.pi) / res[0]).astype(int) # Required pixel radius to produce ~1cm2 ROI
d_void = np.ceil(5 / res[0]).astype(int) # Offset distance for rectangular void at top of phantom
dims = img.shape # Dimensions of image
cxy = self.ACR_obj.centre
base_mask = ACRObject.circular_mask((cxy[0], cxy[1] + d_void), r_small, dims) # Dummy circular mask at
# centroid
coords = np.nonzero(base_mask) # Coordinates of mask
lroi = self.ACR_obj.circular_mask([cxy[0], cxy[1] + d_void], r_large, dims)
img_masked = lroi * img
half_max = np.percentile(img_masked[np.nonzero(img_masked)], 50)
min_image = img_masked * (img_masked < half_max)
max_image = img_masked * (img_masked > half_max)
min_rows, min_cols = np.nonzero(min_image)[0], np.nonzero(min_image)[1]
max_rows, max_cols = np.nonzero(max_image)[0], np.nonzero(max_image)[1]
mean_array = np.zeros(img_masked.shape)
def uniformity_iterator(masked_image, sample_mask, rows, cols):
coords = np.nonzero(sample_mask) # Coordinates of mask
for idx, (row, col) in enumerate(zip(rows, cols)):
centre = [row, col]
translate_mask = [coords[0] + centre[0] - cxy[0] - d_void,
coords[1] + centre[1] - cxy[1]]
values = masked_image[translate_mask[0], translate_mask[1]]
if np.count_nonzero(values) < np.count_nonzero(sample_mask):
mean_val = 0
else:
mean_val = np.mean(values[np.nonzero(values)])
mean_array[row, col] = mean_val
return mean_array
min_data = uniformity_iterator(min_image, base_mask, min_rows, min_cols)
max_data = uniformity_iterator(max_image, base_mask, max_rows, max_cols)
sig_max = np.max(max_data)
sig_min = np.min(min_data[np.nonzero(min_data)])
max_loc = np.where(max_data == sig_max)
min_loc = np.where(min_data == sig_min)
piu = 100 * (1 - (sig_max - sig_min) / (sig_max + sig_min))
piu = np.round(piu, 2)
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 1)
fig.set_size_inches(8, 16)
fig.tight_layout(pad=4)
theta = np.linspace(0, 2 * np.pi, 360)
axes[0].imshow(img)
axes[0].scatter(cxy[0], cxy[1], c='red')
axes[0].axis('off')
axes[0].set_title('Centroid Location')
axes[1].imshow(img)
axes[1].scatter([max_loc[1], min_loc[1]], [max_loc[0], min_loc[0]], c='red', marker='x')
axes[1].plot(r_small * np.cos(theta) + max_loc[1], r_small * np.sin(theta) + max_loc[0], c='yellow')
axes[1].annotate('Min = ' + str(np.round(sig_min, 1)), [min_loc[1], min_loc[0] + 10 / res[0]], c='white')
axes[1].plot(r_small * np.cos(theta) + min_loc[1], r_small * np.sin(theta) + min_loc[0], c='yellow')
axes[1].annotate('Max = ' + str(np.round(sig_max, 1)), [max_loc[1], max_loc[0] + 10 / res[0]], c='white')
axes[1].plot(r_large * np.cos(theta) + cxy[1], r_large * np.sin(theta) + cxy[0] + 5 / res[1], c='black')
axes[1].axis('off')
axes[1].set_title('Percent Integral Uniformity = ' + str(np.round(piu, 2)) + '%')
img_path = os.path.realpath(os.path.join(self.report_path, f'{self.key(dcm)}.png'))
fig.savefig(img_path)
self.report_files.append(img_path)
return piu