-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathghosting.py
316 lines (263 loc) · 12 KB
/
ghosting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import sys
import traceback
import numpy as np
import cv2 as cv
import hazenlib.utils
from hazenlib.HazenTask import HazenTask
class Ghosting(HazenTask):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.single_dcm = self.dcm_list[0]
def run(self) -> dict:
results = self.init_result_dict()
img_desc = self.img_desc(
self.single_dcm,
properties=["SeriesDescription", "EchoTime", "NumberOfAverages"],
)
results["file"] = img_desc
try:
ghosting_value = self.get_ghosting(self.single_dcm)
results["measurement"] = {"ghosting %": round(ghosting_value, 3)}
except Exception as e:
print(f"Could not calculate the ghosting for {img_desc} because of : {e}")
traceback.print_exc(file=sys.stdout)
# only return reports if requested
if self.report:
results["report_image"] = self.report_files
return results
def calculate_ghost_intensity(self, ghost, phantom, noise) -> float:
"""
Calculates the ghost intensity using the formula from IPEM Report 112
Ghosting = (Sg-Sn)/(Sp-Sn) x 100%
Returns: :float
References: IPEM Report 112 - Small Bottle Method
MagNET
"""
if ghost is None or phantom is None or noise is None:
raise Exception(
f"At least one of ghost, phantom and noise ROIs is empty or null"
)
if type(ghost) is not np.ndarray:
raise Exception(
f"Ghost, phantom and noise ROIs must be of type numpy.ndarray"
)
ghost_mean = np.mean(ghost)
phantom_mean = np.mean(phantom)
noise_mean = np.mean(noise)
if phantom_mean < ghost_mean or phantom_mean < noise_mean:
raise Exception(
f"The mean phantom signal is lower than the ghost or the noise signal. This can't be the case "
)
return 100 * abs((ghost_mean - noise_mean)) / phantom_mean
def get_signal_bounding_box(self, array: np.ndarray):
max_signal = np.max(array)
signal_limit = np.percentile(max_signal, 0.95) * 0.4
signal = []
for idx, voxel in np.ndenumerate(array):
if voxel > signal_limit:
signal.append(idx)
signal_column = sorted([voxel[1] for voxel in signal])
signal_row = sorted([voxel[0] for voxel in signal])
upper_row = min(signal_row)
lower_row = max(signal_row)
left_column = min(signal_column)
right_column = max(signal_column)
return (
left_column,
right_column,
upper_row,
lower_row,
)
def get_signal_slice(self, bounding_box, slice_radius=5):
left_column, right_column, upper_row, lower_row = bounding_box
centre_row = (upper_row + lower_row) // 2
centre_column = (left_column + right_column) // 2
idxs = (
np.array(
range(centre_column - slice_radius, centre_column + slice_radius),
dtype=np.intp,
)[:, np.newaxis],
np.array(
range(centre_row - slice_radius, centre_row + slice_radius),
dtype=np.intp,
),
)
return idxs
def get_pe_direction(self, dcm):
return dcm.InPlanePhaseEncodingDirection
def get_background_rois(self, dcm, signal_centre):
background_rois = []
if (
self.get_pe_direction(dcm) == "ROW"
): # phase encoding is left -right i.e. increases with columns
if signal_centre[1] < dcm.Rows * 0.5: # phantom is in top half of image
background_rois_row = round(dcm.Rows * 0.75) # in the bottom quadrant
else: # phantom is bottom half of image
background_rois_row = round(dcm.Rows * 0.25) # in the top quadrant
background_rois.append((signal_centre[0], background_rois_row))
if signal_centre[0] > round(dcm.Columns / 2):
# phantom is right half of image need 4 ROIs evenly spaced from 0->background_roi[0]
gap = round(background_rois[0][0] / 4)
background_rois = [
(background_rois[0][0] - i * gap, background_rois_row)
for i in range(4)
]
else:
# phantom is left half of image need 4 ROIs evenly spaced from background_roi[0]->end
gap = round((dcm.Columns - background_rois[0][0]) / 4)
background_rois = [
(background_rois[0][0] + i * gap, background_rois_row)
for i in range(4)
]
else: # phase encoding is top-down i.e. increases with rows (y-axis)
if signal_centre[0] < dcm.Columns * 0.5: # phantom is in left half of image
background_rois_column = round(
dcm.Columns * 0.75
) # in the right quadrant
else: # phantom is right half of image
background_rois_column = round(
dcm.Columns * 0.25
) # in the top quadrant
background_rois.append((background_rois_column, signal_centre[1]))
if signal_centre[1] >= round(dcm.Rows / 2):
# phantom is bottom half of image need 4 ROIs evenly spaced from 0->background_roi[0]
gap = round(background_rois[0][1] / 4)
background_rois = [
(background_rois_column, background_rois[0][1] - i * gap)
for i in range(4)
]
else: # phantom is top half of image need 3 ROIs evenly spaced from background_roi[0]->end
gap = round((dcm.Columns - background_rois[0][1]) / 4)
background_rois = [
(background_rois_column, background_rois[0][1] + i * gap)
for i in range(4)
]
return background_rois
def get_background_slices(self, background_rois, slice_radius=5):
slices = [
(
np.array(
range(roi[0] - slice_radius, roi[0] + slice_radius), dtype=np.intp
)[:, np.newaxis],
np.array(
range(roi[1] - slice_radius, roi[1] + slice_radius), dtype=np.intp
),
)
for roi in background_rois
]
return slices
def get_eligible_area(self, signal_bounding_box, dcm, slice_radius=5):
left_column, right_column, upper_row, lower_row = signal_bounding_box
# take into account when phantom is off edge of image
lower_row = min(dcm.Rows - slice_radius, lower_row)
upper_row = max(slice_radius, upper_row)
right_column = min(dcm.Columns - slice_radius, right_column)
left_column = max(slice_radius, left_column)
padding_from_box = 30 # pixels
if self.get_pe_direction(dcm) == "ROW":
if left_column < dcm.Columns / 2:
# signal is in left half
eligible_columns = range(
right_column + padding_from_box, dcm.Columns - slice_radius
)
eligible_rows = range(upper_row, lower_row)
ghost_slice = np.array(
range(right_column + padding_from_box, dcm.Columns - slice_radius),
dtype=np.intp,
)[:, np.newaxis], np.array(range(upper_row, lower_row))
else:
# signal is in right half
eligible_columns = range(slice_radius, left_column - padding_from_box)
eligible_rows = range(upper_row, lower_row)
ghost_slice = np.array(
range(slice_radius, left_column - padding_from_box), dtype=np.intp
)[:, np.newaxis], np.array(range(upper_row, lower_row))
else:
if upper_row < dcm.Rows / 2:
# signal is in top half
eligible_rows = range(
lower_row + padding_from_box, dcm.Rows - slice_radius
)
eligible_columns = range(left_column, right_column)
ghost_slice = np.array(
range(lower_row + padding_from_box, dcm.Rows - slice_radius),
dtype=np.intp,
)[:, np.newaxis], np.array(range(left_column, right_column))
else:
# signal is in bottom half
eligible_rows = range(slice_radius, upper_row - padding_from_box)
eligible_columns = range(left_column, right_column)
ghost_slice = np.array(
range(slice_radius, upper_row - padding_from_box), dtype=np.intp
)[:, np.newaxis], np.array(range(left_column, right_column))
return eligible_columns, eligible_rows
def get_ghost_slice(self, signal_bounding_box, dcm, slice_radius=5):
eligible_area = self.get_eligible_area(
signal_bounding_box, dcm, slice_radius=slice_radius
)
ghost_slice = np.array(
range(min(eligible_area[1]), max(eligible_area[1])), dtype=np.intp
)[:, np.newaxis], np.array(range(min(eligible_area[0]), max(eligible_area[0])))
return ghost_slice
def get_ghosting(self, dcm) -> float:
bbox = self.get_signal_bounding_box(dcm.pixel_array)
x, y = hazenlib.utils.get_pixel_size(dcm) # assume square pixels i.e. x=y
# ROIs need to be 10mmx10mm
slice_radius = int(10 // (2 * x))
signal_centre = [(bbox[0] + bbox[1]) // 2, (bbox[2] + bbox[3]) // 2]
background_rois = self.get_background_rois(dcm, signal_centre)
ghost_col, ghost_row = self.get_ghost_slice(
bbox, dcm, slice_radius=slice_radius
)
ghost = dcm.pixel_array[(ghost_col, ghost_row)]
signal_col, signal_row = self.get_signal_slice(bbox, slice_radius=slice_radius)
phantom = dcm.pixel_array[(signal_row, signal_col)]
noise = np.concatenate(
[
dcm.pixel_array[(row, col)]
for col, row in self.get_background_slices(
background_rois, slice_radius=slice_radius
)
]
)
eligible_area = self.get_eligible_area(bbox, dcm, slice_radius=slice_radius)
ghosting = self.calculate_ghost_intensity(ghost, phantom, noise)
if self.report:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x1, x2, y1, y2 = bbox
img = dcm.pixel_array
img = img.astype("float64")
# print('this is img',img)
img *= 255.0 / img.max()
# img = hazenlib.utils.rescale_to_byte(dcm.pixel_array)
img = cv.rectangle(img.copy(), (x1, y1), (x2, y2), (255, 0, 0), 1)
for roi in background_rois:
# slice_size = 10
x1 = roi[0] - 5
y1 = roi[1] - 5
x2 = roi[0] + 5
y2 = roi[1] + 5
img = cv.rectangle(img.copy(), (x1, y1), (x2, y2), (255, 0, 0), 1)
x1 = ghost_row.min()
y1 = ghost_col.min()
x2 = ghost_row.max()
y2 = ghost_col.max()
img = cv.rectangle(img.copy(), (x1, y1), (x2, y2), (255, 0, 0), 1)
x1 = min(eligible_area[0])
y1 = min(eligible_area[1])
x2 = max(eligible_area[0])
y2 = max(eligible_area[1])
img = cv.rectangle(img.copy(), (x1, y1), (x2, y2), (255, 0, 0), 1)
ax.imshow(img)
# fig.savefig(f'{self.report_path}.png')
img_path = os.path.realpath(
os.path.join(
self.report_path,
f"{self.img_desc(dcm, properties=['SeriesDescription', 'EchoTime', 'NumberOfAverages'])}.png",
)
)
fig.savefig(img_path)
self.report_files.append(img_path)
return ghosting