-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsnr.py
414 lines (306 loc) · 12.2 KB
/
snr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""
SNR(Im)
Calculates the SNR for a single-slice image of a uniform MRI phantom
This script utilises the smoothed subtraction method described in McCann 2013:
A quick and robust method for measurement of signal-to-noise ratio in MRI, Phys. Med. Biol. 58 (2013) 3775:3790
Created by Neil Heraghty
04/05/2018
"""
import sys
import cv2 as cv
import numpy as np
import pydicom
import skimage.filters
from scipy import ndimage
from skimage import filters
import hazenlib
import hazenlib.tools
import hazenlib.exceptions as exc
from hazenlib.logger import logger
def two_inputs_match(dcm1: pydicom.Dataset, dcm2: pydicom.Dataset) -> bool:
"""
Checks if two DICOMs are sufficiently similar
Parameters
----------
dcm1
dcm2
Returns
-------
"""
fields_to_match = ['StudyInstanceUID', 'RepetitionTime', 'EchoTime', 'FlipAngle']
for field in fields_to_match:
if dcm1.get(field) != dcm2.get(field):
return False
return True
def get_normalised_snr_factor(dcm: pydicom.Dataset, measured_slice_width=None) -> float:
"""
Calculates SNR normalisation factor. Method matches MATLAB script.
Utilises user provided slice_width if provided. Else finds from dcm.
Finds dx, dy and bandwidth from dcm.
Seeks to find TR, image columns and rows from dcm. Else uses default values.
Parameters
----------
dcm, measured_slice_width
Returns
-------
normalised snr factor: float
"""
dx, dy = hazenlib.get_pixel_size(dcm)
bandwidth = hazenlib.get_bandwidth(dcm)
TR=hazenlib.get_TR(dcm)
rows = hazenlib.get_rows(dcm)
columns = hazenlib.get_columns(dcm)
if measured_slice_width:
slice_thickness = measured_slice_width
else:
slice_thickness = hazenlib.get_slice_thickness(dcm)
averages = hazenlib.get_average(dcm)
bandwidth_factor = np.sqrt((bandwidth * columns / 2) / 1000) / np.sqrt(30)
voxel_factor = (1 / (0.001 * dx * dy * slice_thickness))
normalised_snr_factor = bandwidth_factor * voxel_factor * (1 / (np.sqrt(averages*rows*(TR/1000))))
return normalised_snr_factor
def filtered_image(dcm: pydicom.Dataset) -> np.array:
"""
Performs a 2D convolution (for filtering images)
uses uniform_filter SciPy function
parameters:
---------------
a: array to be filtered
returns:
---------------
filtered numpy array
"""
a = dcm.pixel_array.astype('int')
# filter size = 9, following MATLAB code and McCann 2013 paper for head coil, although note McCann 2013 recommends 25x25 for body coil.
filtered_array=ndimage.uniform_filter(a,9,mode='constant')
return filtered_array
def get_noise_image(dcm: pydicom.Dataset) -> np.array:
"""
Separates the image noise by smoothing the image and subtracting the smoothed image
from the original.
parameters:
---------------
a: image array from dcmread and .pixelarray
returns:
---------------
Imnoise: image representing the image noise
"""
a = dcm.pixel_array.astype('int')
# Convolve image with boxcar/uniform kernel
imsmoothed = filtered_image(dcm)
# Subtract smoothed array from original
imnoise = a - imsmoothed
return imnoise
def threshold_image(dcm: pydicom.Dataset):
"""
Threshold images
parameters:
---------------
a: image array from dcmread and .pixelarray
returns:
---------------
imthresholded: thresholded image
mask: threshold mask
"""
a = dcm.pixel_array.astype('int')
threshold_value = skimage.filters.threshold_li(a) # threshold_li: Pixels > this value are assumed foreground
# print('threshold_value =', threshold_value)
mask = a > threshold_value
imthresholded = np.zeros_like(a)
imthresholded[mask] = a[mask]
# # For debugging: Threshold figures:
# from matplotlib import pyplot as plt
# plt.figure()
# fig, ax = plt.subplots(2, 2)
# ax[0, 0].imshow(a)
# ax[0, 1].imshow(mask)
# ax[1, 0].imshow(imthresholded)
# ax[1, 1].imshow(a-imthresholded)
# fig.savefig("../THRESHOLD.png")
return imthresholded, mask
def get_binary_mask_centre(binary_mask) -> (int, int):
"""
Return centroid coordinates of binary polygonal shape
parameters:
---------------
binary_mask: mask of a shape
returns:
---------------
centroid_coords: (col:int, row:int)
"""
from skimage import util
from skimage.measure import label, regionprops
img = util.img_as_ubyte(binary_mask) > 0
label_img = label(img, connectivity=img.ndim)
props = regionprops(label_img)
col = int(props[0].centroid[0])
row = int(props[0].centroid[1])
# print('Centroid coords [x,y] =', col, row)
return int(col), int(row)
def get_roi_samples(ax, dcm: pydicom.Dataset or np.ndarray, centre_col: int, centre_row: int) -> list:
if type(dcm) == np.ndarray:
data = dcm
else:
data = dcm.pixel_array
sample = [None] * 5
#for array indexing: [row, column] format
sample[0] = data[(centre_row - 10):(centre_row + 10), (centre_col - 10):(centre_col + 10)]
sample[1] = data[(centre_row - 50):(centre_row - 30), (centre_col - 50):(centre_col - 30)]
sample[2] = data[(centre_row + 30):(centre_row + 50), (centre_col - 50):(centre_col - 30)]
sample[3] = data[(centre_row - 50):(centre_row - 30), (centre_col + 30):(centre_col + 50)]
sample[4] = data[(centre_row + 30):(centre_row + 50), (centre_col + 30):(centre_col + 50)]
if ax:
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
#for patches: [column/x, row/y] format
rects = [Rectangle((centre_col - 10, centre_row - 10), 20, 20),
Rectangle((centre_col - 50, centre_row - 50), 20, 20),
Rectangle((centre_col + 30, centre_row - 50), 20, 20),
Rectangle((centre_col - 50, centre_row + 30), 20, 20),
Rectangle((centre_col + 30, centre_row + 30), 20, 20)]
pc = PatchCollection(rects, edgecolors='red', facecolors="None", label='ROIs')
ax.add_collection(pc)
return sample
def get_object_centre(dcm) -> (int, int):
"""
Find the phantom object within the image and returns its centre col and row value. Note first element in output = col, second = row.
Args:
dcm:
Returns:
centre: (col:int, row:int)
"""
# Shape Detection
try:
logger.debug('Performing phantom shape detection.')
shape_detector = hazenlib.tools.ShapeDetector(arr=dcm.pixel_array)
orientation = hazenlib.tools.get_image_orientation(dcm.ImageOrientationPatient)
if orientation in ['Sagittal', 'Coronal']:
logger.debug('Orientation = sagittal or coronal.')
# orientation is sagittal to patient
try:
(col, row), size, angle = shape_detector.get_shape('rectangle')
except exc.ShapeError as e:
# shape_detector.find_contours()
# shape_detector.detect()
# contour = shape_detector.shapes['rectangle'][1]
# angle, centre, size = cv.minAreaRect(contour)
# print((angle, centre, size))
# im = cv.drawContours(dcm.pixel_array.copy(), [shape_detector.contours[0]], -1, (0, 255, 255), 10)
# plt.imshow(im)
# plt.savefig("rectangles.png")
# print(shape_detector.shapes.keys())
raise e
elif orientation == 'Transverse':
logger.debug('Orientation = transverse.')
try:
col, row, r = shape_detector.get_shape('circle')
except exc.MultipleShapesError:
logger.info('Warning! Found multiple circles in image, will assume largest circle is phantom.')
col, row, r = get_largest_circle(shape_detector.shapes['circle'])
else:
raise exc.ShapeError("Unable to identify phantom shape.")
# Threshold Detection
except exc.ShapeError:
logger.info('Shape detection failed. Performing object centre measurement by thresholding.')
_, mask = threshold_image(dcm)
row, col = get_binary_mask_centre(mask)
return int(col), int(row)
def snr_by_smoothing(dcm: pydicom.Dataset, measured_slice_width=None, report_path=False) -> float:
"""
Parameters
----------
dcm
measured_slice_width
report_path
Returns
-------
normalised_snr: float
"""
col, row = get_object_centre(dcm=dcm)
noise_img = get_noise_image(dcm=dcm)
signal = [np.mean(roi) for roi in get_roi_samples(ax=None, dcm=dcm, centre_col=col, centre_row=row)]
noise = [np.std(roi, ddof=1) for roi in get_roi_samples(ax=None, dcm=noise_img, centre_col=col, centre_row=row)]
# note no root_2 factor in noise for smoothed subtraction (one image) method, replicating Matlab approach and McCann 2013
snr = np.mean(np.divide(signal, noise))
normalised_snr = snr * get_normalised_snr_factor(dcm, measured_slice_width)
if report_path:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 1)
fig.set_size_inches(5, 5)
fig.tight_layout(pad=1)
axes.set_title('smoothed noise image')
axes.imshow(noise_img, cmap='gray', label='smoothed noise image')
axes.scatter(col, row, 10, marker="+", label='centre')
get_roi_samples(axes, dcm, col, row)
axes.legend()
fig.savefig(report_path + ".png")
return snr, normalised_snr
def get_largest_circle(circles):
largest_r = 0
largest_col, largest_row = 0, 0
for circle in circles:
(col, row), r = cv.minEnclosingCircle(circle)
if r > largest_r:
largest_r = r
largest_col, largest_row = col, row
return largest_col, largest_row, largest_r
def snr_by_subtraction(dcm1: pydicom.Dataset, dcm2: pydicom.Dataset, measured_slice_width=None, report_path=False) -> float:
"""
Parameters
----------
dcm1
dcm2
measured_slice_width
report_path
Returns
-------
"""
col, row = get_object_centre(dcm=dcm1)
difference = np.subtract(dcm1.pixel_array.astype('int'), dcm2.pixel_array.astype('int'))
signal = [np.mean(roi) for roi in get_roi_samples(ax=None, dcm=dcm1, centre_col=col, centre_row=row)]
noise = np.divide([np.std(roi, ddof=1) for roi in get_roi_samples(ax=None, dcm=difference, centre_col=col, centre_row=row)], np.sqrt(2))
snr = np.mean(np.divide(signal, noise))
normalised_snr = snr * get_normalised_snr_factor(dcm1, measured_slice_width)
if report_path:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 1)
fig.set_size_inches(5, 5)
fig.tight_layout(pad=1)
axes.set_title('difference image')
axes.imshow(difference, cmap='gray', label='difference image')
axes.scatter(col, row, 10, marker="+", label='centre')
get_roi_samples(axes, dcm1, col, row)
axes.legend()
fig.savefig(report_path + ".png")
return snr, normalised_snr
def main(data: list, measured_slice_width=None, report_path=False) -> dict:
"""
Parameters
----------
data
measured_slice_width
report_path
Returns
-------
results: list
"""
results = {}
if len(data) == 2:
key = f"{data[0].SeriesDescription}_{data[0].SeriesNumber}_{data[0].InstanceNumber}"
if report_path:
report_path = key
snr, normalised_snr = snr_by_subtraction(data[0], data[1], measured_slice_width, report_path)
results[f"snr_subtraction_measured_{key}"] = round(snr, 2)
results[f"snr_subtraction_normalised_{key}"] = round(normalised_snr, 2)
for idx, dcm in enumerate(data):
try:
key = f"{dcm.SeriesDescription}_{dcm.SeriesNumber}_{dcm.InstanceNumber}"
except AttributeError as e:
print(e)
key = f"{dcm.SeriesDescription}_{dcm.SeriesNumber}"
if report_path:
report_path = key
snr, normalised_snr = snr_by_smoothing(dcm, measured_slice_width, report_path)
results[f"snr_smoothing_measured_{key}"] = round(snr, 2)
results[f"snr_smoothing_normalised_{key}"] = round(normalised_snr, 2)
return results