-
Notifications
You must be signed in to change notification settings - Fork 12
/
acr_slice_thickness.py
321 lines (256 loc) · 11.1 KB
/
acr_slice_thickness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""
ACR Slice Thickness
Calculates the slice thickness for slice 1 of the ACR phantom.
The ramps located in the middle of the phantom are located and line profiles are drawn through them. The full-width
half-maximum (FWHM) of each ramp is determined to be their length. Using the formula described in the ACR guidance, the
slice thickness is then calculated.
Created by Yassine Azma
31/01/2022
"""
import os
import sys
import traceback
import numpy as np
import scipy
import skimage.morphology
import skimage.measure
from hazenlib.HazenTask import HazenTask
from hazenlib.ACRObject import ACRObject
class ACRSliceThickness(HazenTask):
"""Slice width measurement class for DICOM images of the ACR phantom."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
# Initialise ACR object
self.ACR_obj = ACRObject(self.dcm_list)
def run(self) -> dict:
"""Main function for performing slice width measurement
using slice 1 from the ACR phantom image set.
Returns:
dict: results are returned in a standardised dictionary structure specifying the task name, input DICOM Series Description + SeriesNumber + InstanceNumber, task measurement key-value pairs, optionally path to the generated images for visualisation.
"""
# Identify relevant slice
slice_thickness_dcm = self.ACR_obj.slice_stack[0]
# Initialise results dictionary
results = self.init_result_dict()
results["file"] = self.img_desc(slice_thickness_dcm)
try:
result = self.get_slice_thickness(slice_thickness_dcm)
results["measurement"] = {"slice width mm": round(result, 2)}
except Exception as e:
print(
f"Could not calculate the slice thickness for {self.img_desc(slice_thickness_dcm)} because of : {e}"
)
traceback.print_exc(file=sys.stdout)
# only return reports if requested
if self.report:
results["report_image"] = self.report_files
return results
def find_ramps(self, img, centre):
"""Find ramps in the pixel array and return the co-ordinates of their location.
Args:
img (np.ndarray): dcm.pixel_array
centre (list): x,y coordinates of the phantom centre
Returns:
tuple: x and y coordinates of ramp.
"""
# X
investigate_region = int(np.ceil(5.5 / self.ACR_obj.dy).item())
if np.mod(investigate_region, 2) == 0:
investigate_region = investigate_region + 1
# Line profiles around the central row
invest_x = [
skimage.measure.profile_line(
img, (centre[1] + k, 1), (centre[1] + k, img.shape[1]), mode="constant"
)
for k in range(investigate_region)
]
invest_x = np.array(invest_x).T
mean_x_profile = np.mean(invest_x, 1)
abs_diff_x_profile = np.absolute(np.diff(mean_x_profile))
# find the points corresponding to the transition between:
# [0] - background and the hyperintense phantom
# [1] - hyperintense phantom and hypointense region with ramps
# [2] - hypointense region with ramps and hyperintense phantom
# [3] - hyperintense phantom and background
x_peaks, _ = self.ACR_obj.find_n_highest_peaks(abs_diff_x_profile, 4)
x_locs = np.sort(x_peaks) - 1
width_pts = [x_locs[1], x_locs[2]]
width = np.max(width_pts) - np.min(width_pts)
# take rough estimate of x points for later line profiles
x = np.round([np.min(width_pts) + 0.2 * width, np.max(width_pts) - 0.2 * width])
# Y
c = skimage.measure.profile_line(
img,
(centre[1] - 2 * investigate_region, centre[0]),
(centre[1] + 2 * investigate_region, centre[0]),
mode="constant",
).flatten()
abs_diff_y_profile = np.absolute(np.diff(c))
y_peaks, _ = self.ACR_obj.find_n_highest_peaks(abs_diff_y_profile, 2)
y_locs = centre[1] - 2 * investigate_region + 1 + y_peaks
height = np.max(y_locs) - np.min(y_locs)
y = np.round([np.max(y_locs) - 0.25 * height, np.min(y_locs) + 0.25 * height])
return x, y
def FWHM(self, data):
"""Calculate full width at half maximum of the line profile.
Args:
data (np.ndarray): slice profile curve.
Returns:
tuple: co-ordinates of the half-maximum points on the line profile.
"""
baseline = np.min(data)
data -= baseline
# TODO create separate variable so that data value isn't being overwritten
half_max = np.max(data) * 0.5
# Naive attempt
half_max_crossing_indices = np.argwhere(
np.diff(np.sign(data - half_max))
).flatten()
# Interpolation
def simple_interp(x_start, ydata):
"""Simple interpolation - obtaining more accurate x co-ordinates.
Args:
x_start (int or float): x coordinate of the half maximum.
ydata (np.ndarray): y coordinates.
Returns:
float: true x coordinate of the half maximum.
"""
# TODO: account for if x_start is too close to len(ydata)
# causes error for sagittal data
x_init = x_start - 5
x_pts = np.arange(x_init, x_init + 11)
y_pts = ydata[x_pts]
grad = (y_pts[-1] - y_pts[0]) / (x_pts[-1] - x_pts[0])
x_true = x_start + (half_max - ydata[x_start]) / grad
return x_true
FWHM_pts = simple_interp(half_max_crossing_indices[0], data), simple_interp(
half_max_crossing_indices[-1], data
)
return FWHM_pts
def get_slice_thickness(self, dcm):
"""Measure slice thickness. \n
Identify the ramps, measure the line profile, measure the FWHM, and use this to calculate the slice thickness.
Args:
dcm (pydicom.Dataset): DICOM image object.
Returns:
float: measured slice thickness.
"""
img = dcm.pixel_array
cxy, _ = self.ACR_obj.find_phantom_center(img, self.ACR_obj.dx, self.ACR_obj.dy)
x_pts, y_pts = self.find_ramps(img, cxy)
interp_factor = 1 / 5
interp_factor_dx = interp_factor * self.ACR_obj.dx
sample = np.arange(1, x_pts[1] - x_pts[0] + 2)
new_sample = np.arange(1, x_pts[1] - x_pts[0] + interp_factor, interp_factor)
offsets = np.arange(-3, 4)
ramp_length = np.zeros((2, 7))
line_store = []
fwhm_store = []
for i, offset in enumerate(offsets):
lines = [
skimage.measure.profile_line(
img,
(offset + y_pts[0], x_pts[0]),
(offset + y_pts[0], x_pts[1]),
linewidth=2,
mode="constant",
).flatten(),
skimage.measure.profile_line(
img,
(offset + y_pts[1], x_pts[0]),
(offset + y_pts[1], x_pts[1]),
linewidth=2,
mode="constant",
).flatten(),
]
interp_lines = [
scipy.interpolate.interp1d(sample, line)(new_sample) for line in lines
]
fwhm = [self.FWHM(interp_line) for interp_line in interp_lines]
ramp_length[0, i] = interp_factor_dx * np.diff(fwhm[0])
ramp_length[1, i] = interp_factor_dx * np.diff(fwhm[1])
line_store.append(interp_lines)
fwhm_store.append(fwhm)
with np.errstate(divide="ignore", invalid="ignore"):
dz = 0.2 * (np.prod(ramp_length, axis=0)) / np.sum(ramp_length, axis=0)
dz = dz[~np.isnan(dz)]
# TODO check this - if it's taking the value closest to the DICOM slice thickness this is potentially not accurate?
z_ind = np.argmin(np.abs(dcm.SliceThickness - dz))
slice_thickness = dz[z_ind]
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(4, 1)
fig.set_size_inches(8, 24)
fig.tight_layout(pad=4)
x_ramp = new_sample * self.ACR_obj.dx
x_extent = np.max(x_ramp)
y_ramp = line_store[z_ind][1]
y_extent = np.max(y_ramp)
max_loc = np.argmax(y_ramp) * interp_factor_dx
axes[0].imshow(img)
axes[0].scatter(cxy[0], cxy[1], c="red")
axes[0].axis("off")
axes[0].set_title("Centroid Location")
axes[1].imshow(img)
axes[1].plot(
[x_pts[0], x_pts[1]], offsets[z_ind] + [y_pts[0], y_pts[0]], "b-"
)
axes[1].plot(
[x_pts[0], x_pts[1]], offsets[z_ind] + [y_pts[1], y_pts[1]], "r-"
)
axes[1].axis("off")
axes[1].set_title("Line Profiles")
xmin = fwhm_store[z_ind][1][0] * interp_factor_dx / x_extent
xmax = fwhm_store[z_ind][1][1] * interp_factor_dx / x_extent
axes[2].plot(
x_ramp,
y_ramp,
"r",
label=f"FWHM={np.round(ramp_length[1][z_ind], 2)}mm",
)
axes[2].axhline(
0.5 * y_extent, linestyle="dashdot", color="k", xmin=xmin, xmax=xmax
)
axes[2].axvline(
max_loc, linestyle="dashdot", color="k", ymin=0, ymax=10 / 11
)
axes[2].set_xlabel("Relative Position (mm)")
axes[2].set_xlim([0, x_extent])
axes[2].set_ylim([0, y_extent * 1.1])
axes[2].set_title("Upper Ramp")
axes[2].grid()
axes[2].legend(loc="best")
xmin = fwhm_store[z_ind][0][0] * interp_factor_dx / x_extent
xmax = fwhm_store[z_ind][0][1] * interp_factor_dx / x_extent
x_ramp = new_sample * self.ACR_obj.dx
x_extent = np.max(x_ramp)
y_ramp = line_store[z_ind][0]
y_extent = np.max(y_ramp)
max_loc = np.argmax(y_ramp) * interp_factor_dx
axes[3].plot(
x_ramp,
y_ramp,
"b",
label=f"FWHM={np.round(ramp_length[0][z_ind], 2)}mm",
)
axes[3].axhline(
0.5 * y_extent, xmin=xmin, xmax=xmax, linestyle="dashdot", color="k"
)
axes[3].axvline(
max_loc, ymin=0, ymax=10 / 11, linestyle="dashdot", color="k"
)
axes[3].set_xlabel("Relative Position (mm)")
axes[3].set_xlim([0, x_extent])
axes[3].set_ylim([0, y_extent * 1.1])
axes[3].set_title("Lower Ramp")
axes[3].grid()
axes[3].legend(loc="best")
img_path = os.path.realpath(
os.path.join(
self.report_path, f"{self.img_desc(dcm)}_slice_thickness.png"
)
)
fig.savefig(img_path)
self.report_files.append(img_path)
return slice_thickness