-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrelaxometry.py
1311 lines (1084 loc) · 47 KB
/
relaxometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Measure T1 and T2 in Caliber relaxometry phantom.
Introduction
============
This module determines the T1 and T2 decay constants for the relaxometry
spheres in the Caliber (HPD) system phantom
qmri.com/qmri-solutions/t1-t2-pd-imaging-phantom (plates 4 and 5). Values are
compared to published values (without temperature correction). Graphs of fit
and phantom registration images can optionally be produced.
Scan parameters
===============
Manufacturer's details of recommended scan parameters for GE, Philips and
Siemens scanners are available in the 'System Phantom Manual' which can be
downloaded from the above website (T1-VTI and T2 sequences). However, these may
result in long scan times. The parameters below were used to acquire the
images used in testing this module. They are provided for information only.
T1 Relaxometry
--------------
Sequence: Spin echo with inversion recovery
Plane: Coronal
TR (ms): 1000 (or minimum achievable if longer--see note)
TE (ms): 10
TI (ms): {50.0, 100.0, 200.0, 400.0, 600.0, 800.0}
Flip angle: 180 degrees
Matrix: 192 x 192
FoV (mm): 250 x 250
Slices: 2 (or 3 to acquire plate 3 with PD spheres)
Slice width (mm): 5
Distance factor: 35 mm / 700%
NSA: 1
Receive bandwidth:
GE (kHz): 15.63
Philips (Hz / px): 109
Siemens (Hz / px): 130
Reconstruction: Normalised
Note: Some scanners may require a longer TR for long TI values. This algorithm
will accommodate a variation in TR with TI and incomplete recovery due to short
TR.
T2 Relaxometry
--------------
Sequence:
GE: T2 map (TE values fixed)
Other manufacturers: Spin echo multi contrast
Plane: Coronal
TR (ms): 2000
Number of contrasts: maximum
TE (ms): minimum
Flip angle: 90 degrees
Matrix: 192 x 192
FoV (mm): 250 x 250
Slices: 2 (or 3 to acquire plate 3 with PD spheres)
Slice width (mm): 5
Distance factor: 35 mm / 700%
NSA: 1
Receive bandwidth:
GE (kHz): 15.63
Philips (Hz / px): 109
Siemens (Hz / px): 130
Reconstruction: Normalised
Algorithm overview
==================
1. Create ``T1ImageStack`` or ``T2ImageStack`` object which stores a list
of individual DICOM files (as ``pydicom`` objects) in the ``.images``
attribute.
2. Obtain the RT (rotation / translation) matrix to register the template
image to the test image. Four template images are provided, one for
each relaxation parameter (T1 or T2) on plates 4 and 5, and regression
is performed on the first image in the sequence. Optionally output the
overlay image to visually check the fit.
3. An ROI is generated for each target sphere using stored coordinates, the
RT transformation above, and a structuring element (default is a 5x5
boxcar).
4. Store pixel data for each ROI, at various times, in an ``ROITimeSeries``
object. A list of these objects is stored in
``ImageStack.ROI_time_series``.
5. Generate the fit function. For T1 this looks up TR for the given TI
(using piecewise linear interpolation if required) and determines if a
magnitude or signed image is used. No customisation is required for T2
measurements.
6. Determine relaxation time (T1 or T2) by fitting the decay equation to
the ROI data for each sphere. The published values of the relaxation
times are used to seed the optimisation algorithm. A Rician nose model is
used for T2 fitting [1]_. Optionally plot and save the decay curves.
7. Return plate number, relaxation type (T1 or T2), measured relaxation
times, published relaxation times, and fractional differences in a
dictionary.
References
==========
.. [1] Raya, J.G., Dietrich, O., Horng, A., Weber, J., Reiser, M.F.
and Glaser, C., 2010. T2 measurement in articular cartilage: impact of the
fitting method on accuracy and precision at low SNR. Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic
Resonance in Medicine, 63(1), pp.181-193.
Feature enhancements
====================
Template fit on bolt holes--possibly better with large rotation angles
-have bolthole template, find 3 positions in template and image, figure out
transformation.
Template fit on outline image--poss run though edge detection algorithms then
fit.
Use normalised structuring element in ROITimeSeries. This will allow correct
calculation of mean if elements are not 0 or 1.
Get r-squared measure of fit.
"""
import os.path
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
import pydicom
import scipy.ndimage
import scipy.optimize
import skimage.morphology
from scipy.interpolate import UnivariateSpline
from scipy.special import i0e, ive
import hazenlib.exceptions
# Parameters for Rician noise model
MAX_RICIAN_NOISE = 20.0
SEED_RICIAN_NOISE = 5.0
# Use dict to store template and reference information
# Coordinates are in array format (row,col), rather than plt.patches
# format (col,row)
#
# Access as:
# TEMPLATE_VALUES[f'plate{plate_num}']['sphere_centres_row_col']
# TEMPLATE_VALUES[f'plate{plate_num}']['t1'|'t2']['filename']
# TEMPLATE_VALUES[f'plate{plate_num}']['t1'|'t2']['1.5T'|'3.0T']['relax_times']
TEMPLATE_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)),
'data', 'relaxometry')
TEMPLATE_VALUES = {
'plate3': {
'sphere_centres_row_col': (),
'bolt_centres_row_col': (),
't1': {
'filename': '',
'relax_times': []}},
'plate4': {
'sphere_centres_row_col': (
(56, 94), (62, 117), (81, 132), (105, 134), (125, 120), (133, 99),
(127, 75), (108, 60), (84, 59), (64, 72), (80, 81), (78, 111),
(109, 113), (111, 82), (148, 118)),
'bolt_centres_row_col': (),
't1': {
'filename': os.path.join(TEMPLATE_DIR, 'Plate4_T1_signed'),
'relax_times': {
'1.5T':
np.array([2376, 2183, 1870, 1539, 1237, 1030, 752.2, 550.2,
413.4, 292.9, 194.9, 160.2, 106.4, 83.3, 2700]),
'3.0T':
np.array([2480, 2173, 1907, 1604, 1332, 1044, 801.7, 608.6,
458.4, 336.5, 244.2, 176.6, 126.9, 90.9, 2700])}},
't2': {
'filename': os.path.join(TEMPLATE_DIR, 'Plate4_T2'),
'relax_times': {
'1.5T':
np.array([939.4, 594.3, 416.5, 267.0, 184.9, 140.6, 91.76,
64.84, 45.28, 30.62, 19.76, 15.99, 10.47, 8.15,
2400]),
'3.0T':
np.array([581.3, 403.5, 278.1, 190.94, 133.27, 96.89,
64.07, 46.42, 31.97, 22.56, 15.813, 11.237,
7.911, 5.592, 2400])}}},
'plate5': {
'sphere_centres_row_col': (
(56, 95), (62, 117), (81, 133), (104, 134), (124, 121), (133, 98),
(127, 75), (109, 61), (84, 60), (64, 72), (80, 81), (78, 111),
(109, 113), (110, 82), (97, 43)),
'bolt_centres_row_col': ((52, 80), (92, 141), (138, 85)),
't1': {
'filename': os.path.join(TEMPLATE_DIR, 'Plate5_T1_signed'),
'relax_times': {
'1.5T':
np.array([2033, 1489, 1012, 730.8, 514.1, 367.9, 260.1,
184.6, 132.7, 92.7, 65.4, 46.32, 32.45, 22.859,
2700]),
'3.0T':
np.array([1989, 1454, 984.1, 706, 496.7, 351.5, 247.13,
175.3, 125.9, 89.0, 62.7, 44.53, 30.84,
21.719, 2700])}},
't2': {
'filename': os.path.join(TEMPLATE_DIR, 'Plate5_T2'),
'relax_times': {
'1.5T':
np.array([1669.0, 1244.0, 859.3, 628.5, 446.3, 321.2,
227.7, 161.9, 117.1, 81.9, 57.7, 41.0, 28.7,
20.2, 2400]),
'3.0T':
np.array([1465, 1076, 717.9, 510.1, 359.6, 255.5, 180.8,
127.3, 90.3, 64.3, 45.7, 31.86, 22.38,
15.83, 2400])}}}}
def outline_mask(im):
"""
Create contour lines to outline pixels.
Creates a series of ``line`` objects to outline contours on an image. Used
to add ROIs from a mask array. Adapted from [1]_
Parameters
----------
im : array
Pixel array used to create outlines. Array values should be 0 or 1.
Returns
-------
lines : list
List of coordinates of outlines (see Example below).
Example
-------
>>> lines = outline_mask(combined_ROI_map)
>>> for line in lines:
plt.plot(line[1], line[0], color='r', alpha=1)
References
----------
.. [1] stackoverflow.com/questions/40892203/can-matplotlib-contours-match-pixel-edges
"""
lines = []
pad = np.pad(im, [(1, 1), (1, 1)]) # zero padding
im0 = np.abs(np.diff(pad, n=1, axis=0))[:, 1:]
im1 = np.abs(np.diff(pad, n=1, axis=1))[1:, :]
im0 = np.diff(im0, n=1, axis=1)
starts = np.argwhere(im0 == 1)
ends = np.argwhere(im0 == -1)
lines += [([s[0] - .5, s[0] - .5], [s[1] + .5, e[1] + .5]) for s, e
in zip(starts, ends)]
im1 = np.diff(im1, n=1, axis=0).T
starts = np.argwhere(im1 == 1)
ends = np.argwhere(im1 == -1)
lines += [([s[1] + .5, e[1] + .5], [s[0] - .5, s[0] - .5]) for s, e
in zip(starts, ends)]
return lines
def transform_coords(coords, rt_matrix, input_row_col=True,
output_row_col=True):
"""
Convert coordinates using RT transformation matrix.
Note that arrays containing pixel information as displayed using
plt.imshow(pixel_array), for example are referenced using the row_col (y,x)
notation, e.g. pixel_array[row,col]. Plotting points or patches using
matplotlib requires col_row (x,y) notation, e.g. plt.scatter(col,row). The
correct input and output notation must be selected for the correct
transformation.
Parameters
----------
coords : np.array or tuple
Array (n,2) of coordinates to transform.
rt_matrix : np.array
Array (2,3) of transform matrix (Rotation and Translation). See e.g.
cv2.transform() for details.
input_row_col : bool, optional
Select the input coordinate format relative to the image.
If True, input array has row (y-coordinate) first, i.e.:
[[row_1,col_1],
[row_2,col_2],
...,
[row_n,col_n]].
If False, input array has col (x-coordinate) first, i.e.:
[[col_1,row_1],
[col_2,row_2],
...,
[col_n,row_n].
The default is True.
output_row_col : bool, optional
Select the output coordinate order. If True, output matrix is in
row_col order, otherwise it is in col_row order. The default is True.
Returns
-------
out_coords : np.array
Returns (n,2) array of transformed coordinates.
"""
in_coords = np.array(coords) # ensure using np array
if input_row_col: # convert to col_row (xy) format
in_coords = np.flip(in_coords, axis=1)
out_coords = cv.transform(np.array([in_coords]), rt_matrix)
out_coords = out_coords[0] # reduce to two dimensions
if output_row_col:
out_coords = np.flip(out_coords, axis=1)
return out_coords
def pixel_rescale(dcmfile):
"""
Transforms pixel values according to scale values in DICOM header.
DICOM pixel values arrays cannot directly represent signed or float values.
This function converts the ``.pixel_array`` using the scaling values in the
DICOM header.
For Philips scanners the private DICOM fields 2005,100d (=SI) and 2005,100e
(=SS) are used as inverse scaling factors to perform the inverse
transformation [1]_.
Parameters
----------
dcmfile : Pydicom.dataset.FileDataset
DICOM file containing one image.
Returns
-------
numpy.array
Values in ``dcmfile.pixel_array`` transformed using DICOM scaling.
References
----------
.. [1] Chenevert, Thomas L., et al. "Errors in quantitative image analysis
due to platform-dependent image scaling." Translational Oncology 7.1
(2014): 65-71. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998685/
"""
# Check for Philips
if dcmfile.Manufacturer.startswith('Philips'):
ss = dcmfile['2005100e'].value # Scale slope
si = dcmfile['2005100d'].value # Scale intercept
return (dcmfile.pixel_array - si) / ss
else:
return pydicom.pixel_data_handlers.util.apply_modality_lut(
dcmfile.pixel_array, dcmfile)
def generate_t1_function(ti_interp_vals, tr_interp_vals, mag_image=False):
"""
Generate T1 signal function and jacobian with interpolated TRs.
Signal intensity on T1 decay is a function of both TI and TR. Ideally, TR
should be constant and at least 5*T1. However, scan time can be reduced by
allowing a shorter TR which increases at long TIs. For example::
TI | 50 | 100 | 200 | 400 | 600 | 800
---+------+------+------+------+------+------
TR | 1000 | 1000 | 1000 | 1260 | 1860 | 2460
This function factory returns a function which calculates the signal
magnitude using the expression::
S = S0 * (1 - a1 * np.exp(-TI / t1) + np.exp(-TR / t1))
where ``S0`` is the recovered intensity, ``a1`` is theoretically 2.0 but
varies due to inhomogeneous B0 field, ``t1`` is the longitudinal
relaxation time, and the repetition time, ``TR``, is calculated from
``TI`` using piecewise linear interpolation.
Parameters
----------
ti_interp_vals : array_like
Array of TI values used as a look-up table to calculate TR
tr_interp_vals : array_like
Array of TR values used as a lookup table to calculate TR from the TI
used in the sequence.
mag_image : bool, optional
If True, the generated function returns the magnitude of the signal
(i.e. negative outputs become positive). The default is False.
Returns
-------
t1_function : function
S = S0 * (1 - a1 * np.exp(-TI / t1) + np.exp(-TR / t1))
t1_jacobian : function
Tuple of partial derivatives for curve fitting.
eqn_str : string
String representation of fit function.
"""
# Create piecewise liner fit function. k=1 gives linear, s=0 ensures all
# points are on line. Using UnivariateSpline (rather than numpy.interp())
# enables derivative calculation if required.
tr = UnivariateSpline(ti_interp_vals, tr_interp_vals, k=1, s=0)
# tr_der = tr.derivative()
eqn_str = 's0 * (1 - a1 * np.exp(-TI / t1) + np.exp(-TR / t1))'
if mag_image:
eqn_str = f'abs({eqn_str})'
def _t1_function_signed(ti, t1, s0, a1):
pv = s0 * (1 - a1 * np.exp(-ti / t1) + np.exp(-tr(ti) / t1))
return pv
def t1_function(ti, t1, s0, a1):
pv = _t1_function_signed(ti, t1, s0, a1)
if mag_image:
return abs(pv)
else:
return pv
def t1_jacobian(ti, t1, s0, a1):
t1_der = s0 / (t1 ** 2) * (-ti * a1 * np.exp(-ti / t1) + tr(ti)
* np.exp(-tr(ti) / t1))
s0_der = 1 - a1 * np.exp(-ti / t1) + np.exp(-tr(ti) / t1)
a1_der = -s0 * np.exp(-ti / t1)
jacobian = np.array([t1_der, s0_der, a1_der])
if mag_image:
pv = _t1_function_signed(ti, t1, s0, a1)
jacobian = (jacobian * (pv >= 0)) - (jacobian * (pv < 0))
return jacobian.T
return t1_function, t1_jacobian, eqn_str
def est_t1_s0(ti, tr, t1, pv):
"""
Return initial guess of s0 to seed T1 curve fitting.
Parameters
----------
ti : array_like
TI values.
tr : array_like
TR values.
t1 : array_like
Estimated T1 (typically from manufacturer's documentation).
pv : array_like
Mean pixel value (signal) in ROI.
Returns
-------
array_like
Initial s0 guess for calculating T1 relaxation time.
"""
return -pv / (1 - 2 * np.exp(-ti / t1) + np.exp(-tr / t1))
def t2_function(te, t2, s0, c):
r"""
Calculated pixel value with Rician noise model.
Calculates pixel value from [1]_::
.. math::
S=\sqrt{\frac{\pi \alpha^2}{2}} \exp(- \alpha) \left( (1+ 2 \alpha)
\ \text{I_0}(\alpha) + 2 \alpha \ \text{I_1}(\alpha) \right)
\alpha() = \left( \frac{S_0}{2 \sigma} \ \exp{\left(-\frac{\text{TE}}{\text{T}_2}\right)} \right)^2
\text{I}_n() = n^\text{th} \ \text{order modified Bessel function of the first kind}
Parameters
----------
te : array_like
Echo times.
t2 : float
T2 decay constant.
S0 : float
Initial pixel magnitude.
C : float
Noise parameter for Rician model (equivalent to st dev).
Returns
-------
pv : array_like
Theoretical pixel values (signal) at each TE.
References
----------
.. [1] Raya, J.G., Dietrich, O., Horng, A., Weber, J., Reiser, M.F. and
Glaser, C., 2010. T2 measurement in articular cartilage: impact of the
fitting method on accuracy and precision at low SNR. Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic
Resonance in Medicine, 63(1), pp.181-193.
"""
s0 = s0
alpha = (s0 / (2 * c) * np.exp(-te / t2)) **2
# NB need to use `i0e` and `ive` below to avoid numeric inaccuracy from
# multiplying by huge exponentials then dividing by the same exponential
pv = np.sqrt(np.pi/2 * c ** 2) * \
((1 + 2 * alpha) * i0e(alpha) + 2 * alpha * ive(1, alpha))
return pv
def est_t2_s0(te, t2, pv, c=0.0):
"""
Initial guess for s0 to seed curve fitting::
.. math::
S_0=\\frac{pv-c}{exp(-TE/T_2)}
Parameters
----------
te : array_like
Echo time(s).
t2 : array_like
T2 decay constant.
pv : array_like
Mean pixel value (signal) in ROI with ``te`` echo time.
c : array_like
Constant offset, theoretically ``full_like(te, 0.0)``.
Returns
-------
array_like
Initial s0 estimate.
"""
return (pv - c) / np.exp(-te / t2)
def rms(arr):
"""
Calculate RMS of an array.
Parameters
----------
arr : array_like
Input array
Returns
-------
rms : float
sqrt(mean(square(arr)))
"""
return np.sqrt(np.mean(np.square(arr)))
class ROITimeSeries:
"""
Samples at one image location (ROI) at numerous sample times.
Estimating T1 and T2 relaxation parameters at any ROI requires a series
of pixel values and sequence times (e.g. TI, TE, TR). This class is a
wrapper for storing and accessing these parameters.
Attributes
----------
POI_mask : array
Array the same size as the image. All values are 0, except a single 1
at the point of interest (POI), the centre of the ROI.
ROI_mask : array
Array the same size as the image. Values in the ROI are coded as 1s,
all other values are zero.
pixel_values : list of arrays
List of 1-D arrays of pixel values in ROI. The variance could be used
as a measure of ROI homogeneity to identify incorrect sphere location.
times : list of floats
If ``time_attr`` was used in the constructor, this list contains the
value of ``time_attr``. Typically ``'EchoTime'`` or
``'InversionTime'``.
trs : list of floats
Values of TR for each image.
means : list of floats
Mean pixel value of ROI for each image in series.
"""
SAMPLE_ELEMENT = skimage.morphology.square(5)
def __init__(self, dcm_images, poi_coords_row_col, time_attr=None,
kernel=None):
"""
Create ROITimeSeries for ROI parameters at sequential scans.
Parameters
----------
dcm_images : list
List of pydicom images of same object with different scan
parameters (e.g. TIs or TEs). Typically ``ImageStack.images``.
poi_coords_row_col : array
Two element array with coordinates of point of interest (POI),
typically the centre of the ROI, in row_col (y,x) format.
time_attr : string, optional
If present, lookup the DICOM attribute ``[time_attr]`` (typically
``'InversionTime'`` or ``'EchoTime'``) and store in the list
``self.times``. The default is ``None``, which does not create
``self.times``
kernel : array_like, optional
Structuring element which defines ROI size and shape, centred on
POI. Each element should be 1 or 0, otherwise calculation of mean
will be incorrect. If ``None``, use a 5x5 square. The default is
``None``.
"""
if kernel is None:
kernel = self.SAMPLE_ELEMENT
self.POI_mask = np.zeros((dcm_images[0].pixel_array.shape[0],
dcm_images[0].pixel_array.shape[1]),
dtype=np.int8)
self.POI_mask[poi_coords_row_col[0], poi_coords_row_col[1]] = 1
self.ROI_mask = np.zeros_like(self.POI_mask)
self.ROI_mask = scipy.ndimage.filters.convolve(self.POI_mask, kernel)
self._time_attr = time_attr
if time_attr is not None:
self.times = [x[time_attr].value.real for x in dcm_images]
self.pixel_values = [
pixel_rescale(img)[self.ROI_mask > 0] for img in dcm_images]
self.trs = [x['RepetitionTime'].value.real for x in dcm_images]
def __len__(self):
"""Number of time samples in series."""
return len(self.pixel_values)
@property
def means(self):
"""
List of mean ROI values at different times.
Returns
-------
List of mean pixel value in ROI for each sample.
"""
return [np.mean(pvs) for pvs in self.pixel_values]
class ImageStack():
"""
Object to hold image_slices and methods for T1, T2 calculation.
"""
def __init__(self, image_slices, template_dcm, plate_number=None,
dicom_order_key=None):
"""
Create ImageStack object.
Parameters
----------
image_slices : list of pydicom.FileDataSet objects
List of pydicom objects to perform relaxometry analysis on.
template_dcm : pydicom FileDataSet (or None)
DICOM template object.
plate_number : int {3,4,5}, optional
For future use. Reference to the plate in the relaxometry phantom.
The default is None.
dicom_order_key : string, optional
DICOM attribute to order images. Typically 'InversionTime' for T1
relaxometry or 'EchoTime' for T2.
"""
self.plate_number = plate_number
# Store template pixel array, after scaling in 0028,1052 and 0028,1053
# applied
self.template_dcm = template_dcm
if template_dcm is not None:
self.template_px = pixel_rescale(template_dcm)
self.dicom_order_key = dicom_order_key
self.images = image_slices # store images
if dicom_order_key is not None:
self.order_by(dicom_order_key)
b0_val = self.images[0]['MagneticFieldStrength'].value
if b0_val == 1.5:
self.b0_str = '1.5T'
elif b0_val == 3.0:
self.b0_str = '3.0T'
else:
# TODO incorporate warning through e.g. logging module
print('Unable to match B0 to default values. Using 1.5T.\n'
f" {self.images[0]['MagneticFieldStrength']}")
self.b0_str = '1.5T'
def template_fit(self, image_index=0):
"""
Calculate transformation matrix to fit template to image.
The template pixel array, self.template_px, is fitted to one of the
images in self.images (default=0). The resultant RT matrix is stored as
self.warp_matrix.
This matrix can be used to map coordinates from template space to image
space using transform_coords(...), or to map masks from template space
to image space using cv2.warpAffine(...).
To map from image space to template space, the 'inverse' RT matrix can
be calculated using:
inverse_transform_matrix = cv.invertAffineTransform(self.warp_matrix)
Parameters
----------
image_index : int, optional
Index of image to be used for template matching. The default is 0.
Returns
-------
warp_matrix : np.array
RT transform matrix (2,3).
Further details
---------------
Untested for situations where the template matrix is larger than the
image (lack of data!). Tested for images larger than templates.
TODO
----
This routine is suboptimal. It may be better to extract the bolt
hole locations and fit from them, or run an edge-detection algorithm
as pixel values are highly variable between scanners and manufacturers.
Need to check if image is real valued, typically signed then shifted so
background is 2048, or magnitude image. Currently it forces converts
all images to magnitude images before regression.
Despite these limitations, this method works well in practice for small
angle rotations.
"""
target_px = pixel_rescale(self.images[0])
template_px = self.template_px
# Pad template or target pixels if required
scale_factor = len(target_px) / len(template_px)
pad_size = np.subtract(template_px.shape, target_px.shape)
assert pad_size[0] == pad_size[1], "Image matrices must be square."
if pad_size[0] > 0: # pad target--UNTESTED
target_px = np.pad(target_px, pad_width=(0, pad_size[0]))
elif pad_size[0] < 0: # pad template
template_px = np.pad(template_px, pad_width=(0, -pad_size[0]))
# Always fit on magnitude images for simplicity. May be suboptimal
self.template8bit = \
cv.normalize(abs(template_px),
None, 0, 255, norm_type=cv.NORM_MINMAX,
dtype=cv.CV_8U)
self.target8bit = cv.normalize(abs(target_px),
None, 0, 255, norm_type=cv.NORM_MINMAX,
dtype=cv.CV_8U)
# initialise transformation fitting parameters.
number_of_iterations = 500
termination_eps = 1e-10
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT,
number_of_iterations, termination_eps)
self.warp_matrix = scale_factor * np.eye(2, 3, dtype=np.float32)
self.scaled_template8bit = cv.warpAffine(self.template8bit,
self.warp_matrix,
(self.template8bit.shape[1],
self.template8bit.shape[0]))
# Apply transformation
self.template_cc, self.warp_matrix = \
cv.findTransformECC(self.template8bit, self.target8bit,
self.warp_matrix, criteria=criteria)
self.warped_template8bit = cv.warpAffine(self.template8bit,
self.warp_matrix,
(self.template8bit.shape[1],
self.template8bit.shape[0]))
return self.warp_matrix
def plot_fit(self):
"""
Visual representation of target fitting.
Create 2x2 subplot showing 8-bit version of:
1. Template
2. Original image
3. Overlay of (1) and (2)
4. Overlay of RT transformed template and (2)
"""
fig = plt.figure()
plt.subplot(2, 2, 1)
plt.imshow(self.template8bit, cmap='gray')
plt.title('Template')
plt.axis('off')
ax = plt.subplot(2, 2, 2)
self.plot_rois(new_fig=False)
plt.title('Image')
plt.subplot(2, 2, 3)
plt.imshow(self.scaled_template8bit / 2 + self.target8bit / 2, cmap='gray')
plt.title('Image / template overlay')
plt.axis('off')
plt.subplot(2, 2, 4)
plt.imshow(self.warped_template8bit / 2 + self.target8bit / 2, cmap='gray')
plt.title('Image / fitted template overlay')
plt.axis('off')
plt.tight_layout()
return fig
def plot_rois(self, new_fig=True):
"""
Plot ROIs on image for visual check on template fitting.
Parameters
----------
new_fig : bool, optional
Create new figure if True. Otherwise create in current axis (e.g.
as a subplot). The default is True.
Returns
-------
matplotlib figure handle if a new figure was created, otherwise
None.
"""
fig = None
if new_fig:
# Create image in a new figure (not a subplot)
fig = plt.figure()
plt.imshow(self.target8bit, cmap='gray')
plt.axis('off')
if hasattr(self, 'ROI_time_series'):
combined_ROI_map = np.zeros_like(self.ROI_time_series[0].ROI_mask)
for roi in self.ROI_time_series:
combined_ROI_map += roi.ROI_mask
lines = outline_mask(combined_ROI_map)
for line in lines:
plt.plot(line[1], line[0], color='r', alpha=1)
return fig
def order_by(self, att):
"""Order images by attribute (e.g. EchoTime, InversionTime)."""
self.images.sort(key=lambda x: x[att].value.real)
def generate_time_series(self, coords_row_col, fit_coords=True,
kernel=None):
"""
Create list of ROITimeSeries objects.
Parameters
----------
coords_row_col : array_like
Array of coordinates points of interest (POIs) for each centre of
each ROI. They should be in [[col0, row0], [col1, row1], ...]
format.
fit_coords : bool, optional
If ``True``, the coordinates provided are for the template ROIs and
will be transformed to the image space using ``transfor_coords()``.
The default is True.
kernel : array, optional
Structuring element which should be an array of 1s and possibly 0s.
If ``None``, use the default from ``ROItimeSeries`` constructor.
The default is None.
"""
num_coords = np.size(coords_row_col, axis=0)
if fit_coords:
coords_row_col = transform_coords(coords_row_col, self.warp_matrix,
input_row_col=True,
output_row_col=True)
self.ROI_time_series = []
for i in range(num_coords):
self.ROI_time_series.append(ROITimeSeries(
self.images, coords_row_col[i], time_attr=self.dicom_order_key,
kernel=kernel))
def generate_fit_function(self):
"""Null method in base class, may be overwritten in subclass."""
class T1ImageStack(ImageStack):
"""
Calculate T1 relaxometry.
Overloads the following methods from ``ImageStack``:
``generate_fit_function``
``initialise_fit_parameters``
``find_relax_times``
"""
def __init__(self, image_slices, template_dcm=None, plate_number=None):
super().__init__(image_slices, template_dcm, plate_number=plate_number,
dicom_order_key='InversionTime')
def generate_fit_function(self):
""""Create T1 fit function for magnitude/signed image and variable TI."""
# check if image is signed or magnitude
if np.all(pixel_rescale(self.images[0]) >= 0):
mag_image = True
else:
mag_image = False
self.fit_function, self.fit_jacobian, self.fit_eqn_str = \
generate_t1_function(self.ROI_time_series[0].times,
self.ROI_time_series[0].trs,
mag_image=mag_image)
def initialise_fit_parameters(self, t1_estimates):
"""
Estimate fit parameters (t1, s0, a1) for T1 curve fitting.
T1 estimates are provided.
s0 is estimated using abs(est_t1_s0(ti, tr, t1_est, mean_pv))
For each ROI, s0 is calculated using from both the smallest and
largest TI, and the value with the largest mean_pv used. This
guards against the case where division by a mean_pv close to zero
causes a large rounding error.
A1 is estimated as 2.0, the theoretical value assuming homogeneous B0
Parameters
----------
t1_estimates : array_like
T1 values to seed estimation. These should be the manufacturer
provided T1 values where known.
Returns
-------
None.
"""
self.t1_est = t1_estimates
rois = self.ROI_time_series
rois_first_mean = np.array([roi.means[0] for roi in rois])
rois_last_mean = np.array([roi.means[-1] for roi in rois])
s0_est_last = abs(est_t1_s0(rois[0].times[-1], rois[0].trs[-1],
t1_estimates, rois_last_mean))
s0_est_first = abs(est_t1_s0(rois[0].times[0], rois[0].trs[0],
t1_estimates, rois_first_mean))
self.s0_est = np.where(rois_first_mean > rois_last_mean,
s0_est_first, s0_est_last)
self.a1_est = np.full_like(self.s0_est, 2.0)
def find_relax_times(self):
"""
Calculate T1 values. Access as ``image_stack.t1s``
Returns
-------
None.
"""
rois = self.ROI_time_series
self.relax_fit = [scipy.optimize.curve_fit(self.fit_function,
rois[i].times,
rois[i].means,
p0=[self.t1_est[i],
self.s0_est[i],
self.a1_est[i]],
jac=self.fit_jacobian,
method='lm')
for i in range(len(rois))]
@property
def t1s(self):
"""List T1 values for each ROI."""
return [fit[0][0] for fit in self.relax_fit]
@property
def relax_times(self):
"""List of T1 for each ROI."""
return self.t1s
class T2ImageStack(ImageStack):
"""
Calculate T2 relaxometry.
Overloads the following methods from ``ImageStack``:
``generate_fit_function``