-
Notifications
You must be signed in to change notification settings - Fork 12
/
acr_geometric_accuracy.py
329 lines (275 loc) · 12.4 KB
/
acr_geometric_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
ACR Geometric Accuracy
https://www.acraccreditation.org/-/media/acraccreditation/documents/mri/largephantomguidance.pdf
Calculates geometric accuracy for slices 1 and 5 of the ACR phantom.
This script calculates the horizontal and vertical lengths of the ACR phantom in Slice 1 in accordance with the ACR
Guidance.
This script calculates the horizontal, vertical and diagonal lengths of the ACR phantom in Slice 5 in accordance with
the ACR Guidance.
The average distance measurement error, maximum distance measurement error and coefficient of variation of all distance
measurements is reported as recommended by IPEM Report 112, "Quality Control and Artefacts in Magnetic Resonance
Imaging".
This is done by first producing a binary mask for each respective slice. Line profiles are drawn with aid of rotation
matrices around the centre of the test object to determine each respective length. The results are also visualised.
Created by Yassine Azma
18/11/2022
"""
import os
import sys
import traceback
import numpy as np
import skimage.measure
import skimage.transform
import skimage.morphology
from hazenlib.HazenTask import HazenTask
from hazenlib.ACRObject import ACRObject
class ACRGeometricAccuracy(HazenTask):
"""Geometric accuracy measurement class for DICOM images of the ACR phantom."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.ACR_obj = ACRObject(self.dcm_list)
def run(self) -> dict:
"""Main function for performing geometric accuracy measurement using the first and fifth slices from the ACR phantom image set.
Returns:
dict: results are returned in a standardised dictionary structure specifying the task name, input DICOM Series Description + SeriesNumber + InstanceNumber, task measurement key-value pairs, optionally path to the generated images for visualisation.
"""
# Initialise results dictionary
results = self.init_result_dict()
results["file"] = [
self.img_desc(self.ACR_obj.slice_stack[0]),
self.img_desc(self.ACR_obj.slice_stack[4]),
]
try:
lengths_1 = self.get_geometric_accuracy(0)
results["measurement"][self.img_desc(self.ACR_obj.slice_stack[0])] = {
"Horizontal distance": round(lengths_1[0], 2),
"Vertical distance": round(lengths_1[1], 2),
}
except Exception as e:
print(
f"Could not calculate the geometric accuracy for {self.img_desc(self.ACR_obj.slice_stack[0])} because of : {e}"
)
traceback.print_exc(file=sys.stdout)
try:
lengths_5 = self.get_geometric_accuracy(4)
results["measurement"][self.img_desc(self.ACR_obj.slice_stack[4])] = {
"Horizontal distance": round(lengths_5[0], 2),
"Vertical distance": round(lengths_5[1], 2),
"Diagonal distance SW": round(lengths_5[2], 2),
"Diagonal distance SE": round(lengths_5[3], 2),
}
except Exception as e:
print(
f"Could not calculate the geometric accuracy for {self.img_desc(self.ACR_obj.slice_stack[4])} because of : {e}"
)
traceback.print_exc(file=sys.stdout)
L = lengths_1 + lengths_5
mean_err, max_err, cov_l = self.get_distortion_metrics(L)
results["measurement"]["distortion"] = {
"Mean relative measurement error": round(mean_err, 2),
"Max absolute measurement error": round(max_err, 2),
"Coefficient of variation %": round(cov_l, 2),
}
# only return reports if requested
if self.report:
results["report_image"] = self.report_files
return results
def get_geometric_accuracy(self, slice_index):
"""Measure geometric accuracy for input slice. \n
Creates a mask over the phantom from the pixel array of the DICOM image.
Uses the centre and shape of the mask to determine horizontal and vertical lengths,
and also diagonal lengths in slice 5.
Args:
slice_index (int): the index of the slice position, for example slice 5 is at index 4.
Returns:
tuple of float: horizontal and vertical distances.
"""
img_dcm = self.ACR_obj.slice_stack[slice_index]
img = img_dcm.pixel_array
mask = self.ACR_obj.get_mask_image(img)
cxy, _ = self.ACR_obj.find_phantom_center(img, self.ACR_obj.dx, self.ACR_obj.dy)
length_dict = self.ACR_obj.measure_orthogonal_lengths(mask, slice_index)
if slice_index == 4:
sw_dict, se_dict = self.diagonal_lengths(mask, cxy, 4)
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(3, 1)
fig.set_size_inches(8, 24)
fig.tight_layout(pad=4)
if slice_index == 0:
axes[0].imshow(img)
axes[0].scatter(cxy[0], cxy[1], c="red")
axes[0].set_title("Centroid Location")
axes[1].imshow(mask)
axes[1].set_title("Thresholding Result")
axes[2].imshow(img)
axes[2].arrow(
length_dict["Horizontal Extent"][0],
cxy[1],
length_dict["Horizontal Extent"][-1]
- length_dict["Horizontal Extent"][0],
1,
color="blue",
length_includes_head=True,
head_width=5,
)
axes[2].arrow(
cxy[0],
length_dict["Vertical Extent"][0],
1,
length_dict["Vertical Extent"][-1]
- length_dict["Vertical Extent"][0],
color="orange",
length_includes_head=True,
head_width=5,
)
axes[2].legend(
[
str(np.round(length_dict["Horizontal Distance"], 2)) + "mm",
str(np.round(length_dict["Vertical Distance"], 2)) + "mm",
]
)
axes[2].axis("off")
axes[2].set_title("Geometric Accuracy for Slice 1")
img_path = os.path.realpath(
os.path.join(self.report_path, f"{self.img_desc(img_dcm)}.png")
)
fig.savefig(img_path)
self.report_files.append(img_path)
if slice_index == 4:
axes[0].imshow(img)
axes[0].scatter(cxy[0], cxy[1], c="red")
axes[0].axis("off")
axes[0].set_title("Centroid Location")
axes[1].imshow(mask)
axes[1].axis("off")
axes[1].set_title("Thresholding Result")
axes[2].imshow(img)
axes[2].arrow(
length_dict["Horizontal Extent"][0],
cxy[1],
length_dict["Horizontal Extent"][-1]
- length_dict["Horizontal Extent"][0],
1,
color="blue",
length_includes_head=True,
head_width=5,
)
axes[2].arrow(
cxy[0],
length_dict["Vertical Extent"][0],
1,
length_dict["Vertical Extent"][-1]
- length_dict["Vertical Extent"][0],
color="orange",
length_includes_head=True,
head_width=5,
)
axes[2].arrow(
se_dict["Start"][0],
se_dict["Start"][1],
se_dict["Extent"][0],
se_dict["Extent"][1],
color="purple",
length_includes_head=True,
head_width=5,
)
axes[2].arrow(
sw_dict["Start"][0],
sw_dict["Start"][1],
sw_dict["Extent"][0],
sw_dict["Extent"][1],
color="yellow",
length_includes_head=True,
head_width=5,
)
axes[2].legend(
[
str(np.round(length_dict["Horizontal Distance"], 2)) + "mm",
str(np.round(length_dict["Vertical Distance"], 2)) + "mm",
str(np.round(sw_dict["Distance"], 2)) + "mm",
str(np.round(se_dict["Distance"], 2)) + "mm",
]
)
axes[2].axis("off")
axes[2].set_title("Geometric Accuracy for Slice 5")
img_path = os.path.realpath(
os.path.join(self.report_path, f"{self.img_desc(img_dcm)}.png")
)
fig.savefig(img_path)
self.report_files.append(img_path)
if slice_index == 4:
return (
length_dict["Horizontal Distance"],
length_dict["Vertical Distance"],
sw_dict["Distance"],
se_dict["Distance"],
)
else:
return length_dict["Horizontal Distance"], length_dict["Vertical Distance"]
def diagonal_lengths(self, img, cxy, slice_index):
"""Measure diagonal lengths. \n
Rotates the pixel array by 45° and measures the horizontal and vertical distances.
Args:
img (np.ndarray): pixel array of the slice (dcm.pixel_array).
cxy (tuple): x,y coordinates of the circle centre.
slice_index (int): index of the slice number.
Returns:
tuple of dictionaries: for both the south-east (SE) diagonal length and the south-west (SW) diagonal length: \n
"start" and "end" indicate the start and end x and y positions of the lengths; "Extent" is the distance (in
pixels) of the lengths; "Distance" is "Extent" with factors applied to convert from pixels to mm.
"""
# Calculate geometric mean of the x and y pixel spacing components,
# due to the possibility of pixels being rectangular,
# ie. the length and width of pixels can differ.
eff_res = np.sqrt(np.mean(np.square((self.ACR_obj.dx, self.ACR_obj.dy))))
img_rotate = skimage.transform.rotate(img, 45, center=(cxy[0], cxy[1]))
length_dict = self.ACR_obj.measure_orthogonal_lengths(img_rotate, slice_index)
extent_h = length_dict["Horizontal Extent"]
origin = (cxy[0], cxy[1])
start = (extent_h[0], cxy[1])
end = (extent_h[-1], cxy[1])
se_x_start, se_y_start = ACRObject.rotate_point(origin, start, 45)
se_x_end, se_y_end = ACRObject.rotate_point(origin, end, 45)
dist_se = (
np.sqrt(np.sum(np.square([se_x_end - se_x_start, se_y_end - se_y_start])))
* eff_res
)
se_dict = {
"Start": (se_x_start, se_y_start),
"End": (se_x_end, se_y_end),
"Extent": (se_x_end - se_x_start, se_y_end - se_y_start),
"Distance": dist_se,
}
extent_v = length_dict["Vertical Extent"]
start = (cxy[0], extent_v[0])
end = (cxy[0], extent_v[-1])
sw_x_start, sw_y_start = ACRObject.rotate_point(origin, start, 45)
sw_x_end, sw_y_end = ACRObject.rotate_point(origin, end, 45)
dist_sw = (
np.sqrt(np.sum(np.square([sw_x_end - sw_x_start, sw_y_end - sw_y_start])))
* eff_res
)
sw_dict = {
"Start": (sw_x_start, sw_y_start),
"End": (sw_x_end, sw_y_end),
"Extent": (sw_x_end - sw_x_start, sw_y_end - sw_y_start),
"Distance": dist_sw,
}
return sw_dict, se_dict
@staticmethod
def get_distortion_metrics(L):
"""Calculates the mean error, the maximum error and the coefficient of
variation between the horizontal and vertical distances
measured on slices 1 and 5.
Args:
L (tuple): horizontal and vertical distances from slices 1 and 5.
Returns:
tuple of floats: mean_err, max_err, cov_l
"""
err = [x - 190 for x in L]
mean_err = np.mean(err)
max_err = np.max(np.absolute(err))
cov_l = 100 * np.std(L) / np.mean(L)
return mean_err, max_err, cov_l