-
Notifications
You must be signed in to change notification settings - Fork 12
/
utils.py
394 lines (305 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
from collections import defaultdict
from skimage import filters
import cv2 as cv
import imutils
import matplotlib
import numpy as np
import pydicom
import hazenlib.exceptions as exc
matplotlib.use("Agg")
def get_dicom_files(folder: str, sort=False) -> list:
if sort:
file_list = [os.path.join(folder, x) for x in os.listdir(folder) if is_dicom_file(os.path.join(folder, x))]
file_list.sort(key=lambda x: pydicom.dcmread(x).InstanceNumber)
else:
file_list = [os.path.join(folder, x) for x in os.listdir(folder) if is_dicom_file(os.path.join(folder, x))]
return file_list
def is_dicom_file(filename):
"""
Util function to check if file is a dicom file
the first 128 bytes are preamble
the next 4 bytes should contain DICM otherwise it is not a dicom
:param filename: file to check for the DICM header block
:type filename: str
:returns: True if it is a dicom file
"""
file_stream = open(filename, 'rb')
file_stream.seek(128)
data = file_stream.read(4)
file_stream.close()
if data == b'DICM':
return True
else:
return False
def is_enhanced_dicom(dcm: pydicom.Dataset) -> bool:
"""
Parameters
----------
dcm
Returns
-------
bool
Raises
------
Exception
Unrecognised SOPClassUID
"""
if dcm.SOPClassUID == '1.2.840.10008.5.1.4.1.1.4.1':
return True
elif dcm.SOPClassUID == '1.2.840.10008.5.1.4.1.1.4':
return False
else:
raise Exception('Unrecognised SOPClassUID')
def get_manufacturer(dcm: pydicom.Dataset) -> str:
supported = ['ge', 'siemens', 'philips', 'toshiba', 'canon']
manufacturer = dcm.Manufacturer.lower()
for item in supported:
if item in manufacturer:
return item
raise Exception(f'{manufacturer} not recognised manufacturer')
def get_average(dcm: pydicom.Dataset) -> float:
if is_enhanced_dicom(dcm):
averages = dcm.SharedFunctionalGroupsSequence[0].MRAveragesSequence[0].NumberOfAverages
else:
averages = dcm.NumberOfAverages
return averages
def get_bandwidth(dcm: pydicom.Dataset) -> float:
"""
Returns PixelBandwidth
Parameters
----------
dcm: pydicom.Dataset
Returns
-------
bandwidth: float
"""
bandwidth = dcm.PixelBandwidth
return bandwidth
def get_num_of_frames(dcm: pydicom.Dataset) -> int:
"""
Returns number of frames of dicom object
Parameters
----------
dcm: pydicom.Dataset
DICOM object
Returns
-------
"""
if len(dcm.pixel_array.shape) > 2:
return dcm.pixel_array.shape[0]
elif len(dcm.pixel_array.shape) == 2:
return 1
def get_slice_thickness(dcm: pydicom.Dataset) -> float:
if is_enhanced_dicom(dcm):
try:
slice_thickness = dcm.PerFrameFunctionalGroupsSequence[0].PixelMeasuresSequence[0].SliceThickness
except AttributeError:
slice_thickness = dcm.PerFrameFunctionalGroupsSequence[0].Private_2005_140f[0].SliceThickness
except Exception:
raise Exception('Unrecognised metadata Field for Slice Thickness')
else:
slice_thickness = dcm.SliceThickness
return slice_thickness
def get_pixel_size(dcm: pydicom.Dataset) -> (float, float):
manufacturer = get_manufacturer(dcm)
try:
if is_enhanced_dicom(dcm):
dx, dy = dcm.PerFrameFunctionalGroupsSequence[0].PixelMeasuresSequence[0].PixelSpacing
else:
dx, dy = dcm.PixelSpacing
except:
print('Warning: Could not find PixelSpacing..')
if 'ge' in manufacturer:
fov = get_field_of_view(dcm)
dx = fov / dcm.Columns
dy = fov / dcm.Rows
else:
raise Exception('Manufacturer not recognised')
return dx, dy
def get_TR(dcm: pydicom.Dataset) -> (float):
"""
Returns Repetition Time (TR)
Parameters
----------
dcm: pydicom.Dataset
Returns
-------
TR: float
"""
try:
TR = dcm.RepetitionTime
except:
print('Warning: Could not find Repetition Time. Using default value of 1000 ms')
TR = 1000
return TR
def get_rows(dcm: pydicom.Dataset) -> (float):
"""
Returns number of image rows (rows)
Parameters
----------
dcm: pydicom.Dataset
Returns
-------
rows: float
"""
try:
rows = dcm.Rows
except:
print('Warning: Could not find Number of matrix rows. Using default value of 256')
rows = 256
return rows
def get_columns(dcm: pydicom.Dataset) -> (float):
"""
Returns number of image columns (columns)
Parameters
----------
dcm: pydicom.Dataset
Returns
-------
columns: float
"""
try:
columns = dcm.Columns
except:
print('Warning: Could not find matrix size (columns). Using default value of 256.')
columns = 256
return columns
def get_field_of_view(dcm: pydicom.Dataset):
# assumes square pixels
manufacturer = get_manufacturer(dcm)
if 'ge' in manufacturer:
fov = dcm[0x19, 0x101e].value
elif 'siemens' in manufacturer:
fov = dcm.Columns * dcm.PixelSpacing[0]
elif 'philips' in manufacturer:
if is_enhanced_dicom(dcm):
fov = dcm.Columns * dcm.PerFrameFunctionalGroupsSequence[0].PixelMeasuresSequence[0].PixelSpacing[0]
else:
fov = dcm.Columns * dcm.PixelSpacing[0]
elif 'toshiba' in manufacturer:
fov = dcm.Columns * dcm.PixelSpacing[0]
else:
raise NotImplementedError('Manufacturer not ge,siemens, toshiba or philips so FOV cannot be calculated.')
return fov
def get_image_orientation(iop):
"""
From http://dicomiseasy.blogspot.com/2013/06/getting-oriented-using-image-plane.html
Args:
iop:
Returns:
"""
iop_round = [round(x) for x in iop]
plane = np.cross(iop_round[0:3], iop_round[3:6])
plane = [abs(x) for x in plane]
if plane[0] == 1:
return "Sagittal"
elif plane[1] == 1:
return "Coronal"
elif plane[2] == 1:
return "Transverse"
def rescale_to_byte(array):
"""
WARNING: This function normalises/equalises the histogram. This might have unintended consequences.
Args:
array:
Returns:
"""
image_histogram, bins = np.histogram(array.flatten(), 255)
cdf = image_histogram.cumsum() # cumulative distribution function
cdf = 255 * cdf / cdf[-1] # normalize
# use linear interpolation of cdf to find new pixel values
image_equalized = np.interp(array.flatten(), bins[:-1], cdf)
return image_equalized.reshape(array.shape).astype('uint8')
class Rod:
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
return f'Rod: {self.x}, {self.y}'
def __str__(self):
return f'Rod: {self.x}, {self.y}'
@property
def centroid(self):
return self.x, self.y
def __lt__(self, other):
"""Using "reading order" in a coordinate system where 0,0 is bottom left"""
try:
x0, y0 = self.centroid
x1, y1 = other.centroid
return (-y0, x0) < (-y1, x1)
except AttributeError:
return NotImplemented
def __eq__(self, other):
return self.x == other.x and self.y == other.y
class ShapeDetector:
"""
This class is largely adapted from https://www.pyimagesearch.com/2016/02/08/opencv-shape-detection/
"""
def __init__(self, arr):
self.arr = arr
self.contours = None
self.shapes = defaultdict(list)
self.blurred = None
self.thresh = None
def find_contours(self):
# convert the resized image to grayscale, blur it slightly, and threshold it
self.blurred = cv.GaussianBlur(self.arr.copy(), (5, 5), 0) # magic numbers
optimal_threshold = filters.threshold_li(self.blurred, initial_guess=np.quantile(self.blurred, 0.50))
self.thresh = np.where(self.blurred > optimal_threshold, 255, 0).astype(np.uint8)
# have to convert type for find contours
contours = cv.findContours(self.thresh, cv.RETR_TREE, 1)
self.contours = imutils.grab_contours(contours)
# rep = cv.drawContours(self.arr.copy(), [self.contours[0]], -1, color=(0, 255, 0), thickness=5)
# plt.imshow(rep)
# plt.title("rep")
# plt.colorbar()
# plt.show()
def detect(self):
for c in self.contours:
# initialize the shape name and approximate the contour
peri = cv.arcLength(c, True)
if peri < 100:
# ignore small shapes, magic number is complete guess
continue
approx = cv.approxPolyDP(c, 0.04 * peri, True)
# if the shape is a triangle, it will have 3 vertices
if len(approx) == 3:
shape = "triangle"
# if the shape has 4 vertices, it is either a square or
# a rectangle
elif len(approx) == 4:
shape = "rectangle"
# if the shape is a pentagon, it will have 5 vertices
elif len(approx) == 5:
shape = "pentagon"
# otherwise, we assume the shape is a circle
else:
shape = "circle"
# return the name of the shape
self.shapes[shape].append(c)
def get_shape(self, shape):
self.find_contours()
self.detect()
if shape not in self.shapes.keys():
# print(self.shapes.keys())
raise exc.ShapeDetectionError(shape)
if len(self.shapes[shape]) > 1:
shapes = [{shape: len(contours)} for shape, contours in self.shapes.items()]
raise exc.MultipleShapesError(shapes)
contour = self.shapes[shape][0]
if shape == 'circle':
# (x,y) is centre of circle, in x, y coordinates. x=column, y=row.
(x, y), r = cv.minEnclosingCircle(contour)
return x, y, r
# Outputs in below code chosen to match cv.minAreaRect output
# https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_features/py_contour_features.html#b-rotated-rectangle
# (x,y) is top-left of rectangle, in x, y coordinates. x=column, y=row.
if shape == 'rectangle' or shape == 'square':
(x, y), size, angle = cv.minAreaRect(contour)
# OpenCV v4.5 adjustment
# - cv.minAreaRect() output tuple order changed since v3.4
# - swap size order & rotate angle by -90
size = (size[1], size[0])
angle = angle - 90
return (x, y), size, angle