-
Notifications
You must be signed in to change notification settings - Fork 12
/
acr_snr.py
276 lines (211 loc) · 10.1 KB
/
acr_snr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
ACR SNR
Calculates the SNR for slice 7 (the uniformity slice) of the ACR phantom.
This script utilises the smoothed subtraction method described in McCann 2013:
A quick and robust method for measurement of signal-to-noise ratio in MRI, Phys. Med. Biol. 58 (2013) 3775:3790
and a standard subtraction SNR.
Created by Neil Heraghty (Adapted by Yassine Azma)
09/01/2023
"""
import sys
import traceback
import os
import hazenlib.utils
from hazenlib.HazenTask import HazenTask
from scipy import ndimage
import numpy as np
import skimage.morphology
import pydicom
class ACRSNR(HazenTask):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.data2 = []
def run(self, measured_slice_width=None, subtract=None) -> dict:
if measured_slice_width is not None:
measured_slice_width = float(measured_slice_width)
snr_results = {}
# SINGLE METHOD (SMOOTHING)
if subtract is None:
z = [dcm.ImagePositionPatient[2] for dcm in self.data]
idx_sort = np.argsort(z)
ind = idx_sort[6]
try:
snr, normalised_snr = self.snr_by_smoothing(self.data[ind], measured_slice_width)
snr_results[f"snr_smoothing_measured_{self.key(self.data[0])}"] = round(snr, 2)
snr_results[f"snr_smoothing_normalised_{self.key(self.data[0])}"] = round(normalised_snr, 2)
except Exception as e:
print(f"Could not calculate the SNR for {self.key(self.data)} because of : {e}")
traceback.print_exc(file=sys.stdout)
# SUBTRACTION METHOD
else:
temp = [f for f in os.listdir(subtract) if os.path.isfile(os.path.join(subtract, f))]
filenames = [f'{subtract}/{file}' for file in temp]
self.data2 = [pydicom.dcmread(dicom) for dicom in filenames]
z = [dcm.ImagePositionPatient[2] for dcm in self.data]
z2 = [dcm.ImagePositionPatient[2] for dcm in self.data2]
idx_sort, idx_sort2 = np.argsort(z), np.argsort(z2)
ind, ind2 = idx_sort[6], idx_sort2[6]
try:
snr, normalised_snr = self.snr_by_subtraction(self.data[ind], self.data2[ind2])
snr_results[f"snr_subtraction_measured_{self.key(self.data[0])}"] = round(snr, 2)
snr_results[f"snr_subtraction_normalised_{self.key(self.data[0])}"] = round(normalised_snr, 2)
except Exception as e:
print(f"Could not calculate the SNR for {self.key(self.data)} and "
f"{self.key(self.data2)} because of : {e}")
traceback.print_exc(file=sys.stdout)
results = {self.key(self.data[0]): snr_results}
# only return reports if requested
if self.report:
results['reports'] = {'images': self.report_files}
return results
def centroid(self, dcm):
img = dcm.pixel_array
mask = img > 0.25 * np.max(img)
open_img = skimage.morphology.area_opening(mask, area_threshold=500)
mask = skimage.morphology.convex_hull_image(open_img)
coords = np.nonzero(mask) # row major - first array is columns
sum_x = np.sum(coords[1])
sum_y = np.sum(coords[0])
cxy = sum_x / coords[0].shape, sum_y / coords[1].shape
cxy = [cxy[0].astype(int), cxy[1].astype(int)]
return mask, cxy
def get_normalised_snr_factor(self, dcm, measured_slice_width=None) -> float:
dx, dy = hazenlib.utils.get_pixel_size(dcm)
bandwidth = hazenlib.utils.get_bandwidth(dcm)
TR = hazenlib.utils.get_TR(dcm)
rows = hazenlib.utils.get_rows(dcm)
columns = hazenlib.utils.get_columns(dcm)
if measured_slice_width:
slice_thickness = measured_slice_width
else:
slice_thickness = hazenlib.utils.get_slice_thickness(dcm)
averages = hazenlib.utils.get_average(dcm)
bandwidth_factor = np.sqrt((bandwidth * columns / 2) / 1000) / np.sqrt(30)
voxel_factor = (1 / (0.001 * dx * dy * slice_thickness))
normalised_snr_factor = bandwidth_factor * voxel_factor * (1 / (np.sqrt(averages * rows * (TR / 1000))))
return normalised_snr_factor
def filtered_image(self, dcm: pydicom.Dataset) -> np.array:
"""
Performs a 2D convolution (for filtering images)
uses uniform_filter SciPy function
parameters:
---------------
a: array to be filtered
returns:
---------------
filtered numpy array
"""
a = dcm.pixel_array.astype('int')
# filter size = 9, following MATLAB code and McCann 2013 paper for head coil, although note McCann 2013 recommends 25x25 for body coil.
filtered_array = ndimage.uniform_filter(a, 25, mode='constant')
return filtered_array
def get_noise_image(self, dcm: pydicom.Dataset) -> np.array:
"""
Separates the image noise by smoothing the image and subtracting the smoothed image
from the original.
parameters:
---------------
a: image array from dcmread and .pixelarray
returns:
---------------
Imnoise: image representing the image noise
"""
a = dcm.pixel_array.astype('int')
# Convolve image with boxcar/uniform kernel
imsmoothed = self.filtered_image(dcm)
# Subtract smoothed array from original
imnoise = a - imsmoothed
return imnoise
def get_roi_samples(self, ax, dcm: pydicom.Dataset or np.ndarray, centre_col: int, centre_row: int) -> list:
if type(dcm) == np.ndarray:
data = dcm
else:
data = dcm.pixel_array
sample = [None] * 5
# for array indexing: [row, column] format
sample[0] = data[(centre_row - 10):(centre_row + 10), (centre_col - 10):(centre_col + 10)]
sample[1] = data[(centre_row - 50):(centre_row - 30), (centre_col - 50):(centre_col - 30)]
sample[2] = data[(centre_row + 30):(centre_row + 50), (centre_col - 50):(centre_col - 30)]
sample[3] = data[(centre_row - 50):(centre_row - 30), (centre_col + 30):(centre_col + 50)]
sample[4] = data[(centre_row + 30):(centre_row + 50), (centre_col + 30):(centre_col + 50)]
if ax:
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
# for patches: [column/x, row/y] format
rects = [Rectangle((centre_col - 10, centre_row - 10), 20, 20),
Rectangle((centre_col - 50, centre_row - 50), 20, 20),
Rectangle((centre_col + 30, centre_row - 50), 20, 20),
Rectangle((centre_col - 50, centre_row + 30), 20, 20),
Rectangle((centre_col + 30, centre_row + 30), 20, 20)]
pc = PatchCollection(rects, edgecolors='red', facecolors="None", label='ROIs')
ax.add_collection(pc)
return sample
def snr_by_smoothing(self, dcm: pydicom.Dataset, measured_slice_width=None) -> float:
"""
Parameters
----------
dcm
measured_slice_width
Returns
-------
normalised_snr: float
"""
_, centre = self.centroid(dcm)
col, row = centre
noise_img = self.get_noise_image(dcm)
signal = [np.mean(roi) for roi in
self.get_roi_samples(ax=None, dcm=dcm, centre_col=int(col), centre_row=int(row))]
noise = [np.std(roi, ddof=1) for roi in
self.get_roi_samples(ax=None, dcm=noise_img, centre_col=int(col), centre_row=int(row))]
# note no root_2 factor in noise for smoothed subtraction (one image) method, replicating Matlab approach and McCann 2013
snr = np.mean(np.divide(signal, noise))
normalised_snr = snr * self.get_normalised_snr_factor(dcm, measured_slice_width)
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 1)
fig.set_size_inches(5, 5)
fig.tight_layout(pad=1)
axes.set_title('smoothed noise image')
axes.imshow(noise_img, cmap='gray', label='smoothed noise image')
axes.scatter(col, row, 10, marker="+", label='centre')
self.get_roi_samples(axes, dcm, int(col), int(row))
axes.legend()
img_path = os.path.realpath(os.path.join(self.report_path, f'{self.key(dcm)}_smoothing.png'))
fig.savefig(img_path)
self.report_files.append(img_path)
return snr, normalised_snr
def snr_by_subtraction(self, dcm1: pydicom.Dataset, dcm2: pydicom.Dataset, measured_slice_width=None) -> float:
"""
Parameters
----------
dcm1
dcm2
measured_slice_width
Returns
-------
"""
_, centre = self.centroid(dcm1)
col, row = centre
difference = np.subtract(dcm1.pixel_array.astype('int'), dcm2.pixel_array.astype('int'))
signal = [np.mean(roi) for roi in
self.get_roi_samples(ax=None, dcm=dcm1, centre_col=int(col), centre_row=int(row))]
noise = np.divide(
[np.std(roi, ddof=1) for roi in
self.get_roi_samples(ax=None, dcm=difference, centre_col=int(col), centre_row=int(row))],
np.sqrt(2))
snr = np.mean(np.divide(signal, noise))
normalised_snr = snr * self.get_normalised_snr_factor(dcm1, measured_slice_width)
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 1)
fig.set_size_inches(5, 5)
fig.tight_layout(pad=1)
axes.set_title('difference image')
axes.imshow(difference, cmap='gray', label='difference image')
axes.scatter(col, row, 10, marker="+", label='centre')
self.get_roi_samples(axes, dcm1, int(col), int(row))
axes.legend()
img_path = os.path.realpath(os.path.join(self.report_path, f'{self.key(dcm1)}_snr_subtraction.png'))
fig.savefig(img_path)
self.report_files.append(img_path)
return snr, normalised_snr