-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathparam_stamp.py
201 lines (175 loc) · 9.43 KB
/
param_stamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from data.load import get_experiment
from utils import checkattr
def get_param_stamp_from_args(args, gen_classifier=False):
'''To get param-stamp a bit quicker.'''
import define_models as define
# -get configurations of experiment
config = get_experiment(
name=args.experiment, tasks=args.tasks if hasattr(args, 'tasks') else 1, data_dir=args.d_dir, only_config=True,
normalize=args.normalize if hasattr(args, "normalize") else False, verbose=False,
)
# -get feature extractor
feature_extractor_name = None
depth = args.depth if hasattr(args, 'depth') else 0
if (checkattr(args, 'hidden') or checkattr(args, 'slda')):
feature_extractor = define.define_feature_extractor(args=args, config=config, device='cpu')
feature_extractor_name = feature_extractor.name if depth > 0 else None
config = config.copy() # -> make a copy to avoid overwriting info in the original config-file
config['size'] = feature_extractor.conv_out_size
config['channels'] = feature_extractor.conv_out_channels
depth = 0
# -get classifier architecture
if gen_classifier:
model = define.define_gen_classifer(args=args, config=config, device='cpu', depth=depth)
elif checkattr(args, 'slda'):
model = define.define_slda(args=args, num_features=feature_extractor.conv_out_units, classes=config['classes'],
device='cpu')
elif checkattr(args, 'feedback'):
model = define.define_vae_classifier(args=args, config=config, device='cpu', depth=depth)
else:
model = define.define_classifier(args=args, config=config, device='cpu', depth=depth)
# -get generator architecture
if (hasattr(args, 'replay') and args.replay=="generative") and (not checkattr(args, 'feedback')):
generator = define.define_autoencoder(args, config, device='cpu', depth=depth)
replay_model_name = generator.name
else:
replay_model_name = None
# -extract and return param-stamp
param_stamp = get_param_stamp_gen_classifier(
args, model.name, feature_extractor_name=feature_extractor_name, verbose=False
) if gen_classifier else get_param_stamp(
args, model.name, replay_model_name=replay_model_name, feature_extractor_name=feature_extractor_name,
verbose=False
)
return param_stamp
def get_param_stamp_gen_classifier(args, model_name, feature_extractor_name=None, verbose=True):
'''Based on the input-arguments, produce a "parameter-stamp".'''
# -for task
task_stamp = "{exp}{norm}{aug}".format(
exp=args.experiment, norm="-N" if hasattr(args, 'normalize') and args.normalize else "",
aug="+" if hasattr(args, "augment") and args.augment else "",
)
if verbose:
print(" --> task: "+task_stamp)
# -for model
model_stamp = model_name if feature_extractor_name is None else "{}--{}".format(feature_extractor_name, model_name)
if verbose:
print(" --> model: "+model_stamp)
# -for training
pre_conv = ""
if checkattr(args, "pre_convE") and (args.depth>0 or feature_extractor_name is not None):
ltag = "" if not hasattr(args, "convE_ltag") or args.convE_ltag=="none" else "-{}".format(args.convE_ltag)
pre_conv = "-pCvE{}".format(ltag)
freeze_conv = "-fCvE" if (
checkattr(args, "freeze_convE") and (args.depth>0 or feature_extractor_name is not None)
) else ""
train_stamp = "{i_e}{num}-lr{lr}-b{bsz}{pretr}{freeze}{recon}".format(
i_e="e" if (args.iters is None) or checkattr(args, 'single_epochs') else "i",
num=1 if checkattr(args, 'single_epochs') else (args.epochs if (args.iters is None) else args.iters),
lr=args.lr, bsz=args.batch, pretr=pre_conv, freeze=freeze_conv,
recon="-{}".format(args.recon_loss) if hasattr(args, 'recon_loss') else "",
)
if verbose:
print(" --> training-params: " + train_stamp)
# --> combine
param_stamp = "{}--{}--{}{}".format(
task_stamp, model_stamp, train_stamp, "-s{}".format(args.seed) if not args.seed==0 else "",
)
## Print param-stamp on screen and return
if verbose:
print(param_stamp)
return param_stamp
def get_param_stamp(args, model_name, replay_model_name=None, feature_extractor_name=None, verbose=True):
'''Based on the input-arguments, produce a "parameter-stamp".'''
# -for tasks settings
multi_n_stamp = "-{n}{off}".format(
n=args.tasks, off="-OFF" if checkattr(args, 'offline') else ""
) if hasattr(args, "tasks") else ""
task_stamp = "{exp}{norm}{aug}{multi_n}".format(
exp=args.experiment, norm="-N" if hasattr(args, 'normalize') and args.normalize else "",
aug="+" if hasattr(args, "augment") and args.augment else "", multi_n=multi_n_stamp,
)
if verbose:
print(" --> tasks: "+task_stamp)
# -for model
model_stamp = model_name if feature_extractor_name is None else "H{}{}--{}".format(
feature_extractor_name, "-tr1" if checkattr(args, 'train_on_first') else "", model_name
)
if verbose:
print(" --> model: "+model_stamp)
# -for (pre-)training / freezing of feature extractor
if checkattr(args, "pre_convE") and hasattr(args, 'depth') and args.depth>0:
ltag = "" if (not hasattr(args, "convE_ltag")) or args.convE_ltag=="none" else "-{}".format(args.convE_ltag)
pre = "pCvE{}".format(ltag)
else:
pre = "pNo"
freeze_conv = (checkattr(args, "freeze_convE") and hasattr(args, 'depth') and args.depth>0)
freeze = "-f{}{}".format("All" if checkattr(args, 'freeze_fcE') else "CvE",
"-af1" if checkattr(args, 'freeze_after_first') else "") if (
(freeze_conv and (feature_extractor_name is None)) or checkattr(args, "freeze_fcE")
) else ""
pretrain_stamp = "{pre}{freeze}".format(pre=pre, freeze=freeze)
if verbose:
print(" --> pretraining: " + pretrain_stamp)
# -for training parameters
needed = (checkattr(args, 'train_on_first') and feature_extractor_name is not None) or (not checkattr(args, 'slda'))
if needed:
epochs = "{i_e}{num}".format(
i_e="e" if (args.iters is None) or checkattr(args, 'single_epochs') else "i",
num=1 if checkattr(args, 'single_epochs') else (args.epochs if (args.iters is None) else args.iters),
)
hyper_stamp = "{epochs}-{optim}-lr{lr}-b{bsz}{reinit}".format(
epochs=epochs, optim=args.optimizer, lr=args.lr, bsz=args.batch,
reinit="-R" if checkattr(args, 'reinit') else ""
)
if verbose:
print(" --> train-params: " + hyper_stamp)
train_stamp = "--{}".format(hyper_stamp) if needed else ""
# -for negative samples (i.e., which classes to train on?)
neg_sample_stamp = "--{}".format(args.neg_samples) if not checkattr(args, 'slda') else ""
if verbose and not checkattr(args, 'slda'):
print(" --> neg sampling: " + args.neg_samples)
# -for EWC / SI
if (checkattr(args, 'ewc') and args.ewc_lambda>0) or (checkattr(args, 'si') and args.si_c>0):
ewc_stamp = "EWC{l}-{fi}{o}{only_hid}".format(
l=args.ewc_lambda, fi="{}".format("N" if args.fisher_n is None else args.fisher_n),
o="-O{}".format(args.gamma) if checkattr(args, 'online') else "",
only_hid="-oh" if checkattr(args, 'reg_only_hidden') else ""
) if (checkattr(args, 'ewc') and args.ewc_lambda>0) else ""
si_stamp = "SI{c}-{eps}{max}{only_hid}".format(
c=args.si_c, eps=args.epsilon, #--> below line is artefact of earlier mistake
max="-m{}".format(args.omega_max) if hasattr(args, 'omega_max') and (args.omega_max is not None) else "-mNone",
only_hid="-oh" if checkattr(args, 'reg_only_hidden') else ""
) if (checkattr(args,'si') and args.si_c>0) else ""
both = "--" if (checkattr(args,'ewc') and args.ewc_lambda>0) and (checkattr(args,'si') and args.si_c>0) else ""
if verbose and checkattr(args, 'ewc') and args.ewc_lambda>0:
print(" --> EWC: " + ewc_stamp)
if verbose and checkattr(args, 'si') and args.si_c>0:
print(" --> SI: " + si_stamp)
ewc_stamp = "--{}{}{}".format(ewc_stamp, both, si_stamp) if (
(checkattr(args, 'ewc') and args.ewc_lambda>0) or (checkattr(args, 'si') and args.si_c>0)
) else ""
# -for bias-correcting
if checkattr(args, 'cwr') or checkattr(args, 'cwr_plus'):
bias_stamp = "--cwr{}".format("+" if checkattr(args, "cwr_plus") else "")
else:
bias_stamp = ""
# -for replay
if hasattr(args, 'replay') and not args.replay=="none":
replay_stamp = "{rep}{distil}{model}".format(
rep="gen" if args.replay=="generative" else args.replay,
distil="-Di{}".format(args.temp) if args.distill else "",
model="" if (replay_model_name is None) else "-{}".format(replay_model_name),
)
if verbose:
print(" --> replay: " + replay_stamp)
replay_stamp = "--{}".format(replay_stamp) if (hasattr(args, 'replay') and not args.replay=="none") else ""
# --> combine
param_stamp = "{}--{}--{}{}{}{}{}{}{}".format(
task_stamp, model_stamp, pretrain_stamp, train_stamp, neg_sample_stamp, replay_stamp, ewc_stamp, bias_stamp,
"-s{}".format(args.seed) if not args.seed==0 else "",
)
## Print param-stamp on screen and return
if verbose:
print(param_stamp)
return param_stamp