-
Notifications
You must be signed in to change notification settings - Fork 14
/
preprocess_core50.py
executable file
·259 lines (203 loc) · 9.64 KB
/
preprocess_core50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python3
import numpy as np
import os
import urllib.request
import zipfile
import torch
import argparse
from torch import nn
from torchvision import transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.dataloader import default_collate
from torchvision.models import resnet18
## NOTE: The loading of the COR50e-dataset is based on: https://github.com/Continvvm/continuum (retrieved 18 Dec 2020)
####################################################################################################################
def download(url, path):
if not os.path.exists(path):
os.makedirs(path)
file_name = os.path.join(path, url.split("/")[-1])
if os.path.exists(file_name):
print("Dataset already downloaded at {}.".format(file_name))
else:
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Wget/1.20.3 (linux-gnu)')]
urllib.request.install_opener(opener)
urllib.request.urlretrieve(url, file_name, ProgressBar().update)
return file_name
def unzip(path):
directory_path = os.path.dirname(path)
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(directory_path)
class ProgressBar:
'''Basic progress bar, based on: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console'''
def __init__(self):
self.count = 0
def update(self, tmp, block_size, total_size):
self.count += block_size
percent = "{}".format(int(100 * self.count / total_size))
filled_length = int(100 * self.count // total_size)
pbar = "#" * filled_length + '-' * (100 - filled_length)
print("\r|%s| %s%%" % (pbar, percent), end="\r")
if self.count == total_size:
print()
class Identity(nn.Module):
'''A nn-module to simply pass on the input data.'''
def forward(self, x):
return x
def __repr__(self):
tmpstr = self.__class__.__name__ + '()'
return tmpstr
def label_squeezing_collate_fn(batch):
x, y = default_collate(batch)
return x, y.long().squeeze()
def get_data_loader(dataset, batch_size, cuda=False, collate_fn=label_squeezing_collate_fn, drop_last=False):
'''Return <DataLoader>-object for the provided <DataSet>-object [dataset].'''
return DataLoader(
dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn, drop_last=drop_last,
**({'num_workers': 0, 'pin_memory': True} if cuda else {})
)
class COR50eDataset(Dataset):
'''Create dataset from <np.array> with paths to images saved on disk.'''
def __init__(self, x, y):
self._x = x # <np.array> with path to images
self._y = y # <np.array> with labels
def __len__(self):
return self._x.shape[0]
def get_sample(self, index):
'''Returns a Pillow image corresponding to the given `index`.'''
x = self._x[index]
x = Image.open(x).convert("RGB")
return x
def __getitem__(self, index):
'''Method used by PyTorch's DataLoaders to query a sample and its target.'''
# -get image & label
img = self.get_sample(index)
y = self._y[index]
# -transform image to tensor
img = transforms.ToTensor()(img)
# -return the tuple
return img, y
####################################################################################################################
## Function for specifying input options
def handle_inputs():
filename = 'preprocess_core50.py'
description = 'Download and preprocess (with ResNet18 pretrained on ImageNet) the CORe50 dataset.'
parser = argparse.ArgumentParser('./{}.py'.format(filename), description=description)
parser.add_argument('--data-dir', type=str, default='./store/datasets', dest='d_dir', help="default: %(default)s")
parser.add_argument('--batch', type=int, default=512, help="batch-size for pre-processing")
args = parser.parse_args()
return args
## Function for downloading and pre-processing the CORe50 dataset
def download_and_preprocess(data_dir='./store/datasets', batch_size=512):
# Create folders, if necessary
if not os.path.isdir(data_dir):
os.mkdir(data_dir)
if not os.path.isdir(os.path.join(data_dir, 'core50_features')):
os.mkdir(os.path.join(data_dir, 'core50_features'))
# Location where data and CSV file with IDs of training samples can be downloaded
data_url = "http://bias.csr.unibo.it/maltoni/download/core50/core50_128x128.zip"
train_ids_url = "https://vlomonaco.github.io/core50/data/core50_train.csv"
# Download the data
if os.path.exists(os.path.join(data_dir, "core50_128x128")):
print("CORe50-dataset already downloaded.")
else:
print("Downloading the CORe50-dataset...")
path = download(data_url, data_dir)
print("Unzipping the downloaded dataset...")
unzip(path)
# Download the CSV file containing the IDs of the training vs. test samples
split_path = os.path.join(data_dir, "core50_train.csv")
if os.path.exists(split_path):
train_image_ids_path = split_path
print("CSV-file with default train/test split already downloaded.")
else:
print("Downloading CSV-file with default train/test split...")
train_image_ids_path = download(train_ids_url, data_dir)
# Read the CSV file containing the IDs of the training vs. test samples
train_image_ids = set()
with open(train_image_ids_path, "r") as f:
for line in f:
image_id = line.split(",")[0].split(".")[0]
train_image_ids.add(image_id)
# Prepare for collecting the paths (and corresponding labels) of the images
x_train, y_train = [], []
x_test, y_test = [], []
# Cycle through the 10 domains:
for domain_id in range(10):
# -folder of this domain
domain_folder = os.path.join(data_dir, "core50_128x128", "s{}".format(domain_id + 1))
# In each domain, there are 50 different objects. Cycle through them:
for object_id in range(50):
# -folder for this object
object_folder = os.path.join(domain_folder, "o{}".format(object_id + 1))
# Cycle through all images of the current object in the current domain:
for path in os.listdir(object_folder):
# -get ID of image (needed to check whether in train- or test-set)
image_id = path.split(".")[0]
# -add the path to this images to train- or test-set
in_train_set = (image_id in train_image_ids)
if in_train_set:
x_train.append(os.path.join(object_folder, path))
y_train.append(object_id)
else:
x_test.append(os.path.join(object_folder, path))
y_test.append(object_id)
# Convert to numpy-arrays
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
# Create a separate train- and test-dataset for each object
train_datasets = []
test_datasets = []
for object_id in range(50):
# -training data
selection = np.isin(y_train, [object_id])
dataset = COR50eDataset(x=x_train[selection], y=y_train[selection])
train_datasets.append(dataset)
# -test data
selection = np.isin(y_test, [object_id])
dataset = COR50eDataset(x=x_test[selection], y=y_test[selection])
test_datasets.append(dataset)
# Use cuda for the pre-processing?
cuda = torch.cuda.is_available()# and args.cuda
device = torch.device("cuda" if cuda else "cpu")
# Specify and load pretrained model to extract the features with
print("Loading ResNet18-model, pretrained on ImageNet...")
feature_extractor = resnet18(pretrained=True)
feature_extractor.fc = Identity() #-> remove final layer
# Move feature extractor to correct device and set to evaluation-mode
feature_extractor.to(device)
feature_extractor.eval()
num_features = 512
# Cylce through all 50 objects
for object_id in range(50):
print("Extracting features for object '{}'...".format(object_id))
# -training data
loader = get_data_loader(train_datasets[object_id], batch_size=batch_size, drop_last=False, cuda=cuda)
all_features = torch.empty((len(loader.dataset), num_features)) #-> allocate tensor, to be filled slice-by-slice
count = 0
for x, _ in loader:
with torch.no_grad():
x = feature_extractor(x.to(device)).cpu()
all_features[count:(count + x.shape[0])] = x.view(-1, num_features)
count += x.shape[0]
# -store tensor with all extrated features for this object's training data
path_name = os.path.join(data_dir, 'core50_features', 'train_object{}.pt'.format(object_id))
torch.save(all_features, path_name)
# -testing data
loader = get_data_loader(test_datasets[object_id], batch_size=batch_size, drop_last=False, cuda=cuda)
all_features = torch.empty((len(loader.dataset), num_features))
count = 0
for x, _ in loader:
with torch.no_grad():
x = feature_extractor(x.to(device)).cpu()
all_features[count:(count + x.shape[0])] = x.view(-1, num_features)
count += x.shape[0]
# -store tensor with all extrated features for this object's test data
path_name = os.path.join(data_dir, 'core50_features', 'test_object{}.pt'.format(object_id))
torch.save(all_features, path_name)
if __name__ == '__main__':
args = handle_inputs()
download_and_preprocess(data_dir=args.d_dir, batch_size=args.batch)