-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtuning-free-mix.py
227 lines (196 loc) · 10.4 KB
/
tuning-free-mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import copy
import datetime
import logging
import inspect
import math
import os
from typing import Dict, Optional
from omegaconf import OmegaConf
import pandas as pd
import torch
import torch.utils.checkpoint
import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer,DPTForDepthEstimation,DPTImageProcessor
from glv.models_wota.unet import UNet3DConditionModel
from glv.data.dataset import GLVDataset
from glv.pipelines.pipeline_tuning_free import TuningFreePipeline
from glv.util import ddim_inversion_long, save_videos_grid, ddim_inversion
from einops import rearrange
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def main(
pretrained_model_path: str,
output_dir: str,
train_data: Dict,
validation_data: Dict,
train_batch_size: int = 1,
mixed_precision: Optional[str] = "fp16",
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = None,
run_isolated = False,
):
*_, config = inspect.getargvalues(inspect.currentframe())
accelerator = Accelerator(
mixed_precision=mixed_precision,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
depth_estimator = DPTForDepthEstimation.from_pretrained(pretrained_model_path, subfolder="depth_estimator")
feature_extractor = DPTImageProcessor.from_pretrained(pretrained_model_path)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Get the training dataset
train_dataset = GLVDataset(**train_data)
# Preprocessing the dataset
train_dataset.prompt_ids = tokenizer(
train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids[0]
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size
)
# Get the validation pipeline
validation_pipeline_depth = TuningFreePipeline(
vae=vae, text_encoder=text_encoder, unet=unet, tokenizer=tokenizer,
scheduler=noise_scheduler, depth_estimator=depth_estimator,
feature_extractor=feature_extractor
)
validation_pipeline_depth.enable_vae_slicing()
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
# Prepare everything with our `accelerator`.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# unet.to(accelerator.device, dtype=weight_dtype)
depth_estimator.to(accelerator.device, dtype=weight_dtype)
unet = accelerator.prepare(unet)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("tuning-free t2v")
if accelerator.is_main_process:
for step, batch in enumerate(train_dataloader):
logger.info("inference pixel values")
pixel_values = batch["full_video"].to(accelerator.device,weight_dtype)[0].unsqueeze(0)
video_length = pixel_values.shape[1]
video_length = video_length - video_length % validation_data.video_length
pixel_values = pixel_values[:,:video_length]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = [ ]
for i in range(0,video_length,validation_data.video_length):
latents.append(vae.encode(pixel_values[i:i+validation_data.video_length]).latent_dist.sample())
latents = torch.cat(latents,dim=0)
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * 0.18215
pixel_values = (pixel_values+1)/2
samples = []
generator = torch.Generator(device=accelerator.device)
generator.manual_seed(seed)
ddim_inv_latent = None
clip_length = validation_data.video_length
if run_isolated:
if validation_data.use_inv_latent:
# Convert videos to latent space
ddim_inv_latent_lst = []
for i in range(0,video_length-clip_length+1,clip_length):
ddim_inv_latent = ddim_inversion_long(
validation_pipeline_depth, ddim_inv_scheduler, video_latent=latents[:,:,i:i+clip_length],
num_inv_steps=validation_data.num_inv_steps, prompt="", window_size=clip_length, stride=clip_length,pixel_values=pixel_values[i:i+clip_length])[-1].to(weight_dtype)
ddim_inv_latent_lst.append(ddim_inv_latent)
inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-iso.pt")
ddim_inv_latent = torch.cat(ddim_inv_latent_lst,dim=2)
torch.save(ddim_inv_latent, inv_latents_path)
for idx, prompt in enumerate(validation_data.prompts):
sample_lst = []
assert len(prompt) == video_length//clip_length
for i in range(0,video_length-clip_length+1,clip_length):
validation_isodata = copy.deepcopy(validation_data)
validation_isodata.stride = clip_length
sample = validation_pipeline_depth(prompt[i//clip_length], pixel_values[i:i+clip_length],generator=generator, latents=ddim_inv_latent[:,:,i:i+clip_length],window_size=clip_length,
**validation_data).videos
sample_lst.append(sample)
sample = torch.cat(sample_lst,dim=2)
save_videos_grid(sample, f"{output_dir}/samples/sample-iso/{prompt}.gif")
samples.append(sample)
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample-iso.gif"
save_videos_grid(samples, save_path)
logging.info(f"Saved samples to {save_path}")
samples = []
if validation_data.use_inv_latent:
inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent.pt")
ddim_inv_latent = ddim_inversion_long(
validation_pipeline_depth, ddim_inv_scheduler, video_latent=latents,
num_inv_steps=validation_data.num_inv_steps, prompt="",window_size=clip_length,stride=validation_data.stride, pixel_values=pixel_values)[-1].to(weight_dtype)
torch.save(ddim_inv_latent, inv_latents_path)
for idx, prompt in enumerate(validation_data.prompts):
with torch.autocast("cuda"):
validation_multidata = copy.deepcopy(validation_data)
validation_multidata.video_length = ddim_inv_latent.shape[2]
prompt = list(prompt)
sample = validation_pipeline_depth.forward_mix(prompt,pixel_values, generator=generator, latents=ddim_inv_latent,window_size=validation_data.video_length,
**validation_multidata).videos
save_videos_grid(sample, f"{output_dir}/samples/sample/{prompt}.gif")
samples.append(sample)
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample.gif"
save_videos_grid(samples, save_path)
logger.info(f"Saved samples to {save_path}")
break
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/tuning-free-mix/car-turn.yaml")
args = parser.parse_args()
conf = OmegaConf.load(args.config)
main(**conf)
max_memory_allocated = torch.cuda.max_memory_allocated() / (1024 ** 3)
print(f"max memory allocated: {max_memory_allocated:.3f} GB.")