-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathchromatin.py
228 lines (190 loc) · 8.75 KB
/
chromatin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
"""Compute chromatin representation of variants (required by predict.py).
This script takes a vcf file, compute the effect of the variant both at the
variant position and at nearby positions, and output the effects as the
representation that can be used by predict.py.
Example:
$ python chromatin.py ./example/example.vcf
"""
import argparse
import math
import pyfasta
import torch
from torch import nn
import numpy as np
import pandas as pd
import h5py
parser = argparse.ArgumentParser(description='Predict variant chromatin effects')
parser.add_argument('inputfile', type=str, help='Input file in vcf format')
parser.add_argument('--maxshift', action="store",
dest="maxshift", type=int, default=800,
help='Maximum shift distance for computing nearby effects')
parser.add_argument('--inputsize', action="store", dest="inputsize", type=int,
default=2000, help="The input sequence window size for neural network")
parser.add_argument('--batchsize', action="store", dest="batchsize",
type=int, default=32, help="Batch size for neural network predictions.")
parser.add_argument('--cuda', action='store_true')
args = parser.parse_args()
genome = pyfasta.Fasta('./resources/hg19.fa')
class LambdaBase(nn.Sequential):
def __init__(self, fn, *args):
super(LambdaBase, self).__init__(*args)
self.lambda_func = fn
def forward_prepare(self, input):
output = []
for module in self._modules.values():
output.append(module(input))
return output if output else input
class Lambda(LambdaBase):
def forward(self, input):
return self.lambda_func(self.forward_prepare(input))
class Beluga(nn.Module):
def __init__(self):
super(Beluga, self).__init__()
self.model = nn.Sequential(
nn.Sequential(
nn.Conv2d(4,320,(1, 8)),
nn.ReLU(),
nn.Conv2d(320,320,(1, 8)),
nn.ReLU(),
nn.Dropout(0.2),
nn.MaxPool2d((1, 4),(1, 4)),
nn.Conv2d(320,480,(1, 8)),
nn.ReLU(),
nn.Conv2d(480,480,(1, 8)),
nn.ReLU(),
nn.Dropout(0.2),
nn.MaxPool2d((1, 4),(1, 4)),
nn.Conv2d(480,640,(1, 8)),
nn.ReLU(),
nn.Conv2d(640,640,(1, 8)),
nn.ReLU(),
),
nn.Sequential(
nn.Dropout(0.5),
Lambda(lambda x: x.view(x.size(0),-1)),
nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(67840,2003)),
nn.ReLU(),
nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(2003,2002)),
),
nn.Sigmoid(),
)
def forward(self, x):
return self.model(x)
model = Beluga()
model.load_state_dict(torch.load('./resources/deepsea.beluga.pth'))
model.eval()
if args.cuda:
model.cuda()
CHRS = ['chr1', 'chr2', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', 'chr9',
'chr10', 'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17',
'chr18', 'chr19', 'chr20', 'chr21', 'chr22', 'chrX','chrY']
inputfile = args.inputfile
maxshift = args.maxshift
inputsize = args.inputsize
batchSize = args.batchsize
windowsize = inputsize + 100
def encodeSeqs(seqs, inputsize=2000):
"""Convert sequences to 0-1 encoding and truncate to the input size.
The output concatenates the forward and reverse complement sequence
encodings.
Args:
seqs: list of sequences (e.g. produced by fetchSeqs)
inputsize: the number of basepairs to encode in the output
Returns:
numpy array of dimension: (2 x number of sequence) x 4 x inputsize
2 x number of sequence because of the concatenation of forward and reverse
complement sequences.
"""
seqsnp = np.zeros((len(seqs), 4, inputsize), np.bool_)
mydict = {'A': np.asarray([1, 0, 0, 0]), 'G': np.asarray([0, 1, 0, 0]),
'C': np.asarray([0, 0, 1, 0]), 'T': np.asarray([0, 0, 0, 1]),
'N': np.asarray([0, 0, 0, 0]), 'H': np.asarray([0, 0, 0, 0]),
'a': np.asarray([1, 0, 0, 0]), 'g': np.asarray([0, 1, 0, 0]),
'c': np.asarray([0, 0, 1, 0]), 't': np.asarray([0, 0, 0, 1]),
'n': np.asarray([0, 0, 0, 0]), '-': np.asarray([0, 0, 0, 0])}
n = 0
for line in seqs:
cline = line[int(math.floor(((len(line) - inputsize) / 2.0))):int(math.floor(len(line) - (len(line) - inputsize) / 2.0))]
for i, c in enumerate(cline):
seqsnp[n, :, i] = mydict[c]
n = n + 1
# get the complementary sequences
dataflip = seqsnp[:, ::-1, ::-1]
seqsnp = np.concatenate([seqsnp, dataflip], axis=0)
return seqsnp
def fetchSeqs(chr, pos, ref, alt, shift=0, inputsize=2000):
"""Fetches sequences from the genome.
Retrieves sequences centered at the given position with the given inputsize.
Returns both reference and alternative allele sequences . An additional 100bp
is retrived to accommodate indels.
Args:
chr: the chromosome name that must matches one of the names in CHRS.
pos: chromosome coordinate (1-based).
ref: the reference allele.
alt: the alternative allele.
shift: retrived sequence center position - variant position.
inputsize: the targeted sequence length (inputsize+100bp is retrived for
reference allele).
Returns:
A string that contains sequence with the reference allele,
A string that contains sequence with the alternative allele,
A boolean variable that tells whether the reference allele matches the
reference genome
The third variable is returned for diagnostic purpose. Generally it is
good practice to check whether the proportion of reference allele
matches is as expected.
"""
windowsize = inputsize + 100
mutpos = int(windowsize / 2 - 1 - shift)
# return string: ref sequence, string: alt sequence, Bool: whether ref allele matches with reference genome
seq = genome.sequence({'chr': chr, 'start': pos + shift -
int(windowsize / 2 - 1), 'stop': pos + shift + int(windowsize / 2)})
return seq[:mutpos] + ref + seq[(mutpos + len(ref)):], seq[:mutpos] + alt + seq[(mutpos + len(ref)):], seq[mutpos:(mutpos + len(ref))].upper() == ref.upper()
vcf = pd.read_csv(inputfile, sep='\t', header=None, comment='#')
# standardize
vcf.iloc[:, 0] = 'chr' + vcf.iloc[:, 0].map(str).str.replace('chr', '')
vcf = vcf[vcf.iloc[:, 0].isin(CHRS)]
for shift in [0, ] + list(range(-200, -maxshift - 1, -200)) + list(range(200, maxshift + 1, 200)):
refseqs = []
altseqs = []
ref_matched_bools = []
for i in range(vcf.shape[0]):
refseq, altseq, ref_matched_bool = fetchSeqs(
vcf[0][i], vcf[1][i], vcf[3][i], vcf[4][i], shift=shift, inputsize=inputsize)
refseqs.append(refseq)
altseqs.append(altseq)
ref_matched_bools.append(ref_matched_bool)
if shift == 0:
# only need to be checked once
print("Number of variants with reference allele matched with reference genome:")
print(np.sum(ref_matched_bools))
print("Number of input variants:")
print(len(ref_matched_bools))
ref_encoded = encodeSeqs(refseqs, inputsize=inputsize).astype(np.float32)
alt_encoded = encodeSeqs(altseqs, inputsize=inputsize).astype(np.float32)
#print(ref_encoded.shape)
#print(alt_encoded.shape)
ref_preds = []
for i in range(int(1 + (ref_encoded.shape[0]-1) / batchSize)):
input = torch.from_numpy(ref_encoded[int(i*batchSize):int((i+1)*batchSize),:,:]).unsqueeze(2)
if args.cuda:
input = input.cuda()
ref_preds.append(model.forward(input).cpu().detach().numpy().copy())
ref_preds = np.vstack(ref_preds)
alt_preds = []
for i in range(int(1 + (alt_encoded.shape[0]-1) / batchSize)):
input = torch.from_numpy(alt_encoded[int(i*batchSize):int((i+1)*batchSize),:,:]).unsqueeze(2)
if args.cuda:
input = input.cuda()
alt_preds.append(model.forward(input).cpu().detach().numpy().copy())
alt_preds = np.vstack(alt_preds)
#ref_preds = np.vstack(map(lambda x: model.forward(x).numpy(),
# np.array_split(ref_encoded, int(1 + len(refseqs) / batchSize))))
#alt_encoded = torch.from_numpy(encodeSeqs(altseqs).astype(np.float32)).unsqueeze(3)
#alt_preds = np.vstack(map(lambda x: model.forward(x).numpy(),
# np.array_split(alt_encoded, int(1 + len(altseqs) / batchSize))))
diff = alt_preds - ref_preds
f = h5py.File(inputfile + '.shift_' + str(shift) + '.diff.h5', 'w')
f.create_dataset('pred', data=diff)
f.close()