-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathmodel.py
486 lines (403 loc) · 16.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import math
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd.profiler as profiler
from pykeops.torch import LazyTensor
from geometry_processing import (
curvatures,
mesh_normals_areas,
tangent_vectors,
atoms_to_points_normals,
)
from helper import soft_dimension, diagonal_ranges
from benchmark_models import DGCNN_seg, PointNet2_seg, dMaSIFConv_seg
def knn_atoms(x, y, x_batch, y_batch, k):
N, D = x.shape
x_i = LazyTensor(x[:, None, :])
y_j = LazyTensor(y[None, :, :])
pairwise_distance_ij = ((x_i - y_j) ** 2).sum(-1)
pairwise_distance_ij.ranges = diagonal_ranges(x_batch, y_batch)
# N.B.: KeOps doesn't yet support backprop through Kmin reductions...
# dists, idx = pairwise_distance_ij.Kmin_argKmin(K=k,axis=1)
# So we have to re-compute the values ourselves:
idx = pairwise_distance_ij.argKmin(K=k, axis=1) # (N, K)
x_ik = y[idx.view(-1)].view(N, k, D)
dists = ((x[:, None, :] - x_ik) ** 2).sum(-1)
return idx, dists
def get_atom_features(x, y, x_batch, y_batch, y_atomtype, k=16):
idx, dists = knn_atoms(x, y, x_batch, y_batch, k=k) # (num_points, k)
num_points, _ = idx.size()
idx = idx.view(-1)
dists = 1 / dists.view(-1, 1)
_, num_dims = y_atomtype.size()
feature = y_atomtype[idx, :]
feature = torch.cat([feature, dists], dim=1)
feature = feature.view(num_points, k, num_dims + 1)
return feature
class Atom_embedding(nn.Module):
def __init__(self, args):
super(Atom_embedding, self).__init__()
self.D = args.atom_dims
self.k = 16
self.conv1 = nn.Linear(self.D + 1, self.D)
self.conv2 = nn.Linear(self.D, self.D)
self.conv3 = nn.Linear(2 * self.D, self.D)
self.bn1 = nn.BatchNorm1d(self.D)
self.bn2 = nn.BatchNorm1d(self.D)
self.relu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x, y, y_atomtypes, x_batch, y_batch):
fx = get_atom_features(x, y, x_batch, y_batch, y_atomtypes, k=self.k)
fx = self.conv1(fx)
fx = fx.view(-1, self.D)
fx = self.bn1(self.relu(fx))
fx = fx.view(-1, self.k, self.D)
fx1 = fx.sum(dim=1, keepdim=False)
fx = self.conv2(fx)
fx = fx.view(-1, self.D)
fx = self.bn2(self.relu(fx))
fx = fx.view(-1, self.k, self.D)
fx2 = fx.sum(dim=1, keepdim=False)
fx = torch.cat((fx1, fx2), dim=-1)
fx = self.conv3(fx)
return fx
class AtomNet(nn.Module):
def __init__(self, args):
super(AtomNet, self).__init__()
self.args = args
self.transform_types = nn.Sequential(
nn.Linear(args.atom_dims, args.atom_dims),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(args.atom_dims, args.atom_dims),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(args.atom_dims, args.atom_dims),
nn.LeakyReLU(negative_slope=0.2),
)
self.embed = Atom_embedding(args)
def forward(self, xyz, atom_xyz, atomtypes, batch, atom_batch):
# Run a DGCNN on the available information:
atomtypes = self.transform_types(atomtypes)
return self.embed(xyz, atom_xyz, atomtypes, batch, atom_batch)
class Atom_embedding_MP(nn.Module):
def __init__(self, args):
super(Atom_embedding_MP, self).__init__()
self.D = args.atom_dims
self.k = 16
self.n_layers = 3
self.mlp = nn.ModuleList(
[
nn.Sequential(
nn.Linear(2 * self.D + 1, 2 * self.D + 1),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(2 * self.D + 1, self.D),
)
for i in range(self.n_layers)
]
)
self.norm = nn.ModuleList(
[nn.GroupNorm(2, self.D) for i in range(self.n_layers)]
)
self.relu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x, y, y_atomtypes, x_batch, y_batch):
idx, dists = knn_atoms(x, y, x_batch, y_batch, k=self.k) # N, 9, 7
num_points = x.shape[0]
num_dims = y_atomtypes.shape[-1]
point_emb = torch.ones_like(x[:, 0])[:, None].repeat(1, num_dims)
for i in range(self.n_layers):
features = y_atomtypes[idx.reshape(-1), :]
features = torch.cat([features, dists.reshape(-1, 1)], dim=1)
features = features.view(num_points, self.k, num_dims + 1)
features = torch.cat(
[point_emb[:, None, :].repeat(1, self.k, 1), features], dim=-1
) # N, 8, 13
messages = self.mlp[i](features) # N,8,6
messages = messages.sum(1) # N,6
point_emb = point_emb + self.relu(self.norm[i](messages))
return point_emb
class Atom_Atom_embedding_MP(nn.Module):
def __init__(self, args):
super(Atom_Atom_embedding_MP, self).__init__()
self.D = args.atom_dims
self.k = 17
self.n_layers = 3
self.mlp = nn.ModuleList(
[
nn.Sequential(
nn.Linear(2 * self.D + 1, 2 * self.D + 1),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(2 * self.D + 1, self.D),
)
for i in range(self.n_layers)
]
)
self.norm = nn.ModuleList(
[nn.GroupNorm(2, self.D) for i in range(self.n_layers)]
)
self.relu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x, y, y_atomtypes, x_batch, y_batch):
idx, dists = knn_atoms(x, y, x_batch, y_batch, k=self.k) # N, 9, 7
idx = idx[:, 1:] # Remove self
dists = dists[:, 1:]
k = self.k - 1
num_points = y_atomtypes.shape[0]
out = y_atomtypes
for i in range(self.n_layers):
_, num_dims = out.size()
features = out[idx.reshape(-1), :]
features = torch.cat([features, dists.reshape(-1, 1)], dim=1)
features = features.view(num_points, k, num_dims + 1)
features = torch.cat(
[out[:, None, :].repeat(1, k, 1), features], dim=-1
) # N, 8, 13
messages = self.mlp[i](features) # N,8,6
messages = messages.sum(1) # N,6
out = out + self.relu(self.norm[i](messages))
return out
class AtomNet_MP(nn.Module):
def __init__(self, args):
super(AtomNet_MP, self).__init__()
self.args = args
self.transform_types = nn.Sequential(
nn.Linear(args.atom_dims, args.atom_dims),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(args.atom_dims, args.atom_dims),
)
self.embed = Atom_embedding_MP(args)
self.atom_atom = Atom_Atom_embedding_MP(args)
def forward(self, xyz, atom_xyz, atomtypes, batch, atom_batch):
# Run a DGCNN on the available information:
atomtypes = self.transform_types(atomtypes)
atomtypes = self.atom_atom(
atom_xyz, atom_xyz, atomtypes, atom_batch, atom_batch
)
atomtypes = self.embed(xyz, atom_xyz, atomtypes, batch, atom_batch)
return atomtypes
def combine_pair(P1, P2):
P1P2 = {}
for key in P1:
v1 = P1[key]
v2 = P2[key]
if v1 is None:
continue
if key == "batch" or key == "batch_atoms":
v1v2 = torch.cat([v1, v2 + v1[-1] + 1], dim=0)
elif key == "triangles":
# v1v2 = torch.cat([v1,v2],dim=1)
continue
else:
v1v2 = torch.cat([v1, v2], dim=0)
P1P2[key] = v1v2
return P1P2
def split_pair(P1P2):
batch_size = P1P2["batch_atoms"][-1] + 1
p1_indices = P1P2["batch"] < batch_size // 2
p2_indices = P1P2["batch"] >= batch_size // 2
p1_atom_indices = P1P2["batch_atoms"] < batch_size // 2
p2_atom_indices = P1P2["batch_atoms"] >= batch_size // 2
P1 = {}
P2 = {}
for key in P1P2:
v1v2 = P1P2[key]
if (key == "rand_rot") or (key == "atom_center"):
n = v1v2.shape[0] // 2
P1[key] = v1v2[:n].view(-1, 3)
P2[key] = v1v2[n:].view(-1, 3)
elif "atom" in key:
P1[key] = v1v2[p1_atom_indices]
P2[key] = v1v2[p2_atom_indices]
elif key == "triangles":
continue
# P1[key] = v1v2[:,p1_atom_indices]
# P2[key] = v1v2[:,p2_atom_indices]
else:
P1[key] = v1v2[p1_indices]
P2[key] = v1v2[p2_indices]
P2["batch"] = P2["batch"] - batch_size + 1
P2["batch_atoms"] = P2["batch_atoms"] - batch_size + 1
return P1, P2
def project_iface_labels(P, threshold=2.0):
queries = P["xyz"]
batch_queries = P["batch"]
source = P["mesh_xyz"]
batch_source = P["mesh_batch"]
labels = P["mesh_labels"]
x_i = LazyTensor(queries[:, None, :]) # (N, 1, D)
y_j = LazyTensor(source[None, :, :]) # (1, M, D)
D_ij = ((x_i - y_j) ** 2).sum(-1).sqrt() # (N, M)
D_ij.ranges = diagonal_ranges(batch_queries, batch_source)
nn_i = D_ij.argmin(dim=1).view(-1) # (N,)
nn_dist_i = (
D_ij.min(dim=1).view(-1, 1) < threshold
).float() # If chain is not connected because of missing densities MaSIF cut out a part of the protein
query_labels = labels[nn_i] * nn_dist_i
P["labels"] = query_labels
class dMaSIF(nn.Module):
def __init__(self, args):
super(dMaSIF, self).__init__()
# Additional geometric features: mean and Gauss curvatures computed at different scales.
self.curvature_scales = args.curvature_scales
self.args = args
I = args.in_channels
O = args.orientation_units
E = args.emb_dims
H = args.post_units
# Computes chemical features
self.atomnet = AtomNet_MP(args)
self.dropout = nn.Dropout(args.dropout)
if args.embedding_layer == "dMaSIF":
# Post-processing, without batch norm:
self.orientation_scores = nn.Sequential(
nn.Linear(I, O),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(O, 1),
)
# Segmentation network:
self.conv = dMaSIFConv_seg(
args,
in_channels=I,
out_channels=E,
n_layers=args.n_layers,
radius=args.radius,
)
# Asymmetric embedding
if args.search:
self.orientation_scores2 = nn.Sequential(
nn.Linear(I, O),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(O, 1),
)
self.conv2 = dMaSIFConv_seg(
args,
in_channels=I,
out_channels=E,
n_layers=args.n_layers,
radius=args.radius,
)
elif args.embedding_layer == "DGCNN":
self.conv = DGCNN_seg(I + 3, E,self.args.n_layers,self.args.k)
if args.search:
self.conv2 = DGCNN_seg(I + 3, E,self.args.n_layers,self.args.k)
elif args.embedding_layer == "PointNet++":
self.conv = PointNet2_seg(args, I, E)
if args.search:
self.conv2 = PointNet2_seg(args, I, E)
if args.site:
# Post-processing, without batch norm:
self.net_out = nn.Sequential(
nn.Linear(E, H),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(H, H),
nn.LeakyReLU(negative_slope=0.2),
nn.Linear(H, 1),
)
def features(self, P, i=1):
"""Estimates geometric and chemical features from a protein surface or a cloud of atoms."""
if (
not self.args.use_mesh and "xyz" not in P
): # Compute the pseudo-surface directly from the atoms
# (Note that we use the fact that dicts are "passed by reference" here)
P["xyz"], P["normals"], P["batch"] = atoms_to_points_normals(
P["atoms"],
P["batch_atoms"],
atomtypes=P["atomtypes"],
resolution=self.args.resolution,
sup_sampling=self.args.sup_sampling,
)
# Estimate the curvatures using the triangles or the estimated normals:
P_curvatures = curvatures(
P["xyz"],
triangles=P["triangles"] if self.args.use_mesh else None,
normals=None if self.args.use_mesh else P["normals"],
scales=self.curvature_scales,
batch=P["batch"],
)
# Compute chemical features on-the-fly:
chemfeats = self.atomnet(
P["xyz"], P["atom_xyz"], P["atomtypes"], P["batch"], P["batch_atoms"]
)
if self.args.no_chem:
chemfeats = 0.0 * chemfeats
if self.args.no_geom:
P_curvatures = 0.0 * P_curvatures
# Concatenate our features:
return torch.cat([P_curvatures, chemfeats], dim=1).contiguous()
def embed(self, P):
"""Embeds all points of a protein in a high-dimensional vector space."""
features = self.dropout(self.features(P))
P["input_features"] = features
torch.cuda.synchronize(device=features.device)
torch.cuda.reset_max_memory_allocated(device=P["atoms"].device)
begin = time.time()
# Ours:
if self.args.embedding_layer == "dMaSIF":
self.conv.load_mesh(
P["xyz"],
triangles=P["triangles"] if self.args.use_mesh else None,
normals=None if self.args.use_mesh else P["normals"],
weights=self.orientation_scores(features),
batch=P["batch"],
)
P["embedding_1"] = self.conv(features)
if self.args.search:
self.conv2.load_mesh(
P["xyz"],
triangles=P["triangles"] if self.args.use_mesh else None,
normals=None if self.args.use_mesh else P["normals"],
weights=self.orientation_scores2(features),
batch=P["batch"],
)
P["embedding_2"] = self.conv2(features)
# First baseline:
elif self.args.embedding_layer == "DGCNN":
features = torch.cat([features, P["xyz"]], dim=-1).contiguous()
P["embedding_1"] = self.conv(P["xyz"], features, P["batch"])
if self.args.search:
P["embedding_2"] = self.conv2(
P["xyz"], features, P["batch"]
)
# Second baseline
elif self.args.embedding_layer == "PointNet++":
P["embedding_1"] = self.conv(P["xyz"], features, P["batch"])
if self.args.search:
P["embedding_2"] = self.conv2(P["xyz"], features, P["batch"])
torch.cuda.synchronize(device=features.device)
end = time.time()
memory_usage = torch.cuda.max_memory_allocated(device=P["atoms"].device)
conv_time = end - begin
return conv_time, memory_usage
def preprocess_surface(self, P):
P["xyz"], P["normals"], P["batch"] = atoms_to_points_normals(
P["atoms"],
P["batch_atoms"],
atomtypes=P["atomtypes"],
resolution=self.args.resolution,
sup_sampling=self.args.sup_sampling,
distance=self.args.distance,
)
if P['mesh_labels'] is not None:
project_iface_labels(P)
def forward(self, P1, P2=None):
# Compute embeddings of the point clouds:
if P2 is not None:
P1P2 = combine_pair(P1, P2)
else:
P1P2 = P1
conv_time, memory_usage = self.embed(P1P2)
# Monitor the approximate rank of our representations:
R_values = {}
R_values["input"] = soft_dimension(P1P2["input_features"])
R_values["conv"] = soft_dimension(P1P2["embedding_1"])
if self.args.site:
P1P2["iface_preds"] = self.net_out(P1P2["embedding_1"])
if P2 is not None:
P1, P2 = split_pair(P1P2)
else:
P1 = P1P2
return {
"P1": P1,
"P2": P2,
"R_values": R_values,
"conv_time": conv_time,
"memory_usage": memory_usage,
}