-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathbenchmark_layers.py
258 lines (206 loc) · 7.54 KB
/
benchmark_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
from typing import Optional
from pykeops.torch import LazyTensor
from torch_geometric.nn import EdgeConv, Reshape
from torch_cluster import knn
from math import ceil
from torch_geometric.nn.inits import reset
from torch.nn import ELU, Conv1d
from torch.nn import Sequential as S, Linear as L, BatchNorm1d as BN
def ranges_slices(batch):
"""Helper function for the diagonal ranges function."""
Ns = batch.bincount()
indices = Ns.cumsum(0)
ranges = torch.cat((0 * indices[:1], indices))
ranges = (
torch.stack((ranges[:-1], ranges[1:])).t().int().contiguous().to(batch.device)
)
slices = (1 + torch.arange(len(Ns))).int().to(batch.device)
return ranges, slices
def diagonal_ranges(batch_x=None, batch_y=None):
"""Encodes the block-diagonal structure associated to a batch vector."""
if batch_x is None and batch_y is None:
return None
ranges_x, slices_x = ranges_slices(batch_x)
ranges_y, slices_y = ranges_slices(batch_y)
return ranges_x, slices_x, ranges_y, ranges_y, slices_y, ranges_x
@torch.jit.ignore
def keops_knn(
x: torch.Tensor,
y: torch.Tensor,
k: int,
batch_x: Optional[torch.Tensor] = None,
batch_y: Optional[torch.Tensor] = None,
cosine: bool = False,
) -> torch.Tensor:
r"""Straightforward modification of PyTorch_geometric's knn method."""
x = x.view(-1, 1) if x.dim() == 1 else x
y = y.view(-1, 1) if y.dim() == 1 else y
y_i = LazyTensor(y[:, None, :])
x_j = LazyTensor(x[None, :, :])
if cosine:
D_ij = -(y_i | x_j)
else:
D_ij = ((y_i - x_j) ** 2).sum(-1)
D_ij.ranges = diagonal_ranges(batch_y, batch_x)
idy = D_ij.argKmin(k, dim=1) # (N, K)
rows = torch.arange(k * len(y), device=idy.device) // k
return torch.stack([rows, idy.view(-1)], dim=0)
knns = {"torch": knn, "keops": keops_knn}
@torch.jit.ignore
def knn_graph(
x: torch.Tensor,
k: int,
batch: Optional[torch.Tensor] = None,
loop: bool = False,
flow: str = "source_to_target",
cosine: bool = False,
target: Optional[torch.Tensor] = None,
batch_target: Optional[torch.Tensor] = None,
backend: str = "torch",
) -> torch.Tensor:
r"""Straightforward modification of PyTorch_geometric's knn_graph method to allow for source/targets."""
assert flow in ["source_to_target", "target_to_source"]
if target is None:
target = x
if batch_target is None:
batch_target = batch
row, col = knns[backend](
x, target, k if loop else k + 1, batch, batch_target, cosine=cosine
)
row, col = (col, row) if flow == "source_to_target" else (row, col)
if not loop:
mask = row != col
row, col = row[mask], col[mask]
return torch.stack([row, col], dim=0)
class MyDynamicEdgeConv(EdgeConv):
r"""Straightforward modification of PyTorch_geometric's DynamicEdgeConv layer."""
def __init__(self, nn, k, aggr="max", **kwargs):
super(MyDynamicEdgeConv, self).__init__(nn=nn, aggr=aggr, **kwargs)
self.k = k
def forward(self, x, batch=None):
""""""
edge_index = knn_graph(
x, self.k, batch, loop=False, flow=self.flow, backend="keops"
)
return super(MyDynamicEdgeConv, self).forward(x, edge_index)
def __repr__(self):
return "{}(nn={}, k={})".format(self.__class__.__name__, self.nn, self.k)
class MyXConv(torch.nn.Module):
def __init__(
self,
in_channels=None,
out_channels=None,
dim=None,
kernel_size=None,
hidden_channels=None,
dilation=1,
bias=True,
backend="torch",
):
super(MyXConv, self).__init__()
self.in_channels = in_channels
if hidden_channels is None:
hidden_channels = in_channels // 4
if hidden_channels == 0:
hidden_channels = 1
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.dim = dim
self.kernel_size = kernel_size
self.dilation = dilation
self.backend = backend
C_in, C_delta, C_out = in_channels, hidden_channels, out_channels
D, K = dim, kernel_size
self.mlp1 = S(
L(dim, C_delta),
ELU(),
BN(C_delta),
L(C_delta, C_delta),
ELU(),
BN(C_delta),
Reshape(-1, K, C_delta),
)
self.mlp2 = S(
L(D * K, K ** 2),
ELU(),
BN(K ** 2),
Reshape(-1, K, K),
Conv1d(K, K ** 2, K, groups=K),
ELU(),
BN(K ** 2),
Reshape(-1, K, K),
Conv1d(K, K ** 2, K, groups=K),
BN(K ** 2),
Reshape(-1, K, K),
)
C_in = C_in + C_delta
depth_multiplier = int(ceil(C_out / C_in))
self.conv = S(
Conv1d(C_in, C_in * depth_multiplier, K, groups=C_in),
Reshape(-1, C_in * depth_multiplier),
L(C_in * depth_multiplier, C_out, bias=bias),
)
self.reset_parameters()
def reset_parameters(self):
reset(self.mlp1)
reset(self.mlp2)
reset(self.conv)
def forward(self, x, source, batch_source, target, batch_target):
""""""
# Load data shapes:
# pos = pos.unsqueeze(-1) if pos.dim() == 1 else pos
(Nin, _), (N, D), K = source.size(), target.size(), self.kernel_size
# Compute K-nn:
row, col = knn_graph(
source,
K * self.dilation,
batch_source,
loop=True,
flow="target_to_source",
target=target,
batch_target=batch_target,
backend=self.backend,
)
# row is a vector of size N*K*dilation that indexes "target"
# col is a vector of size N*K*dilation that indexes "source"
# If needed, sup-sample the K-NN graph:
if self.dilation > 1:
dil = self.dilation
index = torch.randint(
K * dil,
(N, K),
dtype=torch.long,
layout=torch.strided,
device=row.device,
)
arange = torch.arange(N, dtype=torch.long, device=row.device)
arange = arange * (K * dil)
index = (index + arange.view(-1, 1)).view(-1) # (N*K,)
row, col = row[index], col[index]
# assert row.max() < N
# assert col.max() < Nin
# Line 1: local difference vector:
pos = source[col] - target[row] # (N * K, D)
# Line 2: compute F_delta
x_star = self.mlp1(pos.view(N * K, D))
# Line 3: concatenate the features and reshape:
if x is not None:
x = x.unsqueeze(-1) if x.dim() == 1 else x
x = x[col].view(N, K, self.in_channels)
x_star = torch.cat([x_star, x], dim=-1)
x_star = x_star.transpose(1, 2).contiguous()
x_star = x_star.view(N, self.in_channels + self.hidden_channels, K, 1)
# Line 4: Compute the transformation matrix:
transform_matrix = self.mlp2(pos.view(N, K * D))
transform_matrix = transform_matrix.view(N, 1, K, K)
# Line 5: Apply it to the neighborhood:
x_transformed = torch.matmul(transform_matrix, x_star)
x_transformed = x_transformed.view(N, -1, K) # (N, I+H, K)
# Line 6: Apply the convolution filter:
out = self.conv(x_transformed) # (N, Cout)
return out
def __repr__(self):
return "{}({}, {})".format(
self.__class__.__name__, self.in_channels, self.out_channels
)