From 2d55a96f6b841f28899ba1ecd9b78372d2c5e1bb Mon Sep 17 00:00:00 2001 From: Paul Bartell Date: Wed, 7 Apr 2021 10:48:05 -0700 Subject: [PATCH 1/4] Remove coroutines from FreeRTOS-Kernel. --- croutine.c | 363 ---------------------- include/FreeRTOS.h | 10 +- include/croutine.h | 753 --------------------------------------------- include/queue.h | 22 -- queue.c | 291 ------------------ 5 files changed, 2 insertions(+), 1437 deletions(-) delete mode 100644 croutine.c delete mode 100644 include/croutine.h diff --git a/croutine.c b/croutine.c deleted file mode 100644 index a17475aa6e5..00000000000 --- a/croutine.c +++ /dev/null @@ -1,363 +0,0 @@ -/* - * FreeRTOS Kernel - * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy of - * this software and associated documentation files (the "Software"), to deal in - * the Software without restriction, including without limitation the rights to - * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of - * the Software, and to permit persons to whom the Software is furnished to do so, - * subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS - * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR - * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER - * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - * - * https://www.FreeRTOS.org - * https://github.com/FreeRTOS - * - */ - -#include "FreeRTOS.h" -#include "task.h" -#include "croutine.h" - -/* Remove the whole file is co-routines are not being used. */ -#if ( configUSE_CO_ROUTINES != 0 ) - -/* - * Some kernel aware debuggers require data to be viewed to be global, rather - * than file scope. - */ - #ifdef portREMOVE_STATIC_QUALIFIER - #define static - #endif - - -/* Lists for ready and blocked co-routines. --------------------*/ - static List_t pxReadyCoRoutineLists[ configMAX_CO_ROUTINE_PRIORITIES ]; /*< Prioritised ready co-routines. */ - static List_t xDelayedCoRoutineList1; /*< Delayed co-routines. */ - static List_t xDelayedCoRoutineList2; /*< Delayed co-routines (two lists are used - one for delays that have overflowed the current tick count. */ - static List_t * pxDelayedCoRoutineList = NULL; /*< Points to the delayed co-routine list currently being used. */ - static List_t * pxOverflowDelayedCoRoutineList = NULL; /*< Points to the delayed co-routine list currently being used to hold co-routines that have overflowed the current tick count. */ - static List_t xPendingReadyCoRoutineList; /*< Holds co-routines that have been readied by an external event. They cannot be added directly to the ready lists as the ready lists cannot be accessed by interrupts. */ - -/* Other file private variables. --------------------------------*/ - CRCB_t * pxCurrentCoRoutine = NULL; - static UBaseType_t uxTopCoRoutineReadyPriority = 0; - static TickType_t xCoRoutineTickCount = 0, xLastTickCount = 0, xPassedTicks = 0; - -/* The initial state of the co-routine when it is created. */ - #define corINITIAL_STATE ( 0 ) - -/* - * Place the co-routine represented by pxCRCB into the appropriate ready queue - * for the priority. It is inserted at the end of the list. - * - * This macro accesses the co-routine ready lists and therefore must not be - * used from within an ISR. - */ - #define prvAddCoRoutineToReadyQueue( pxCRCB ) \ - { \ - if( ( pxCRCB )->uxPriority > uxTopCoRoutineReadyPriority ) \ - { \ - uxTopCoRoutineReadyPriority = ( pxCRCB )->uxPriority; \ - } \ - vListInsertEnd( ( List_t * ) &( pxReadyCoRoutineLists[ ( pxCRCB )->uxPriority ] ), &( ( pxCRCB )->xGenericListItem ) ); \ - } - -/* - * Utility to ready all the lists used by the scheduler. This is called - * automatically upon the creation of the first co-routine. - */ - static void prvInitialiseCoRoutineLists( void ); - -/* - * Co-routines that are readied by an interrupt cannot be placed directly into - * the ready lists (there is no mutual exclusion). Instead they are placed in - * in the pending ready list in order that they can later be moved to the ready - * list by the co-routine scheduler. - */ - static void prvCheckPendingReadyList( void ); - -/* - * Macro that looks at the list of co-routines that are currently delayed to - * see if any require waking. - * - * Co-routines are stored in the queue in the order of their wake time - - * meaning once one co-routine has been found whose timer has not expired - * we need not look any further down the list. - */ - static void prvCheckDelayedList( void ); - -/*-----------------------------------------------------------*/ - - BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, - UBaseType_t uxPriority, - UBaseType_t uxIndex ) - { - BaseType_t xReturn; - CRCB_t * pxCoRoutine; - - /* Allocate the memory that will store the co-routine control block. */ - pxCoRoutine = ( CRCB_t * ) pvPortMalloc( sizeof( CRCB_t ) ); - - if( pxCoRoutine ) - { - /* If pxCurrentCoRoutine is NULL then this is the first co-routine to - * be created and the co-routine data structures need initialising. */ - if( pxCurrentCoRoutine == NULL ) - { - pxCurrentCoRoutine = pxCoRoutine; - prvInitialiseCoRoutineLists(); - } - - /* Check the priority is within limits. */ - if( uxPriority >= configMAX_CO_ROUTINE_PRIORITIES ) - { - uxPriority = configMAX_CO_ROUTINE_PRIORITIES - 1; - } - - /* Fill out the co-routine control block from the function parameters. */ - pxCoRoutine->uxState = corINITIAL_STATE; - pxCoRoutine->uxPriority = uxPriority; - pxCoRoutine->uxIndex = uxIndex; - pxCoRoutine->pxCoRoutineFunction = pxCoRoutineCode; - - /* Initialise all the other co-routine control block parameters. */ - vListInitialiseItem( &( pxCoRoutine->xGenericListItem ) ); - vListInitialiseItem( &( pxCoRoutine->xEventListItem ) ); - - /* Set the co-routine control block as a link back from the ListItem_t. - * This is so we can get back to the containing CRCB from a generic item - * in a list. */ - listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xGenericListItem ), pxCoRoutine ); - listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xEventListItem ), pxCoRoutine ); - - /* Event lists are always in priority order. */ - listSET_LIST_ITEM_VALUE( &( pxCoRoutine->xEventListItem ), ( ( TickType_t ) configMAX_CO_ROUTINE_PRIORITIES - ( TickType_t ) uxPriority ) ); - - /* Now the co-routine has been initialised it can be added to the ready - * list at the correct priority. */ - prvAddCoRoutineToReadyQueue( pxCoRoutine ); - - xReturn = pdPASS; - } - else - { - xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; - } - - return xReturn; - } -/*-----------------------------------------------------------*/ - - void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, - List_t * pxEventList ) - { - TickType_t xTimeToWake; - - /* Calculate the time to wake - this may overflow but this is - * not a problem. */ - xTimeToWake = xCoRoutineTickCount + xTicksToDelay; - - /* We must remove ourselves from the ready list before adding - * ourselves to the blocked list as the same list item is used for - * both lists. */ - ( void ) uxListRemove( ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) ); - - /* The list item will be inserted in wake time order. */ - listSET_LIST_ITEM_VALUE( &( pxCurrentCoRoutine->xGenericListItem ), xTimeToWake ); - - if( xTimeToWake < xCoRoutineTickCount ) - { - /* Wake time has overflowed. Place this item in the - * overflow list. */ - vListInsert( ( List_t * ) pxOverflowDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) ); - } - else - { - /* The wake time has not overflowed, so we can use the - * current block list. */ - vListInsert( ( List_t * ) pxDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) ); - } - - if( pxEventList ) - { - /* Also add the co-routine to an event list. If this is done then the - * function must be called with interrupts disabled. */ - vListInsert( pxEventList, &( pxCurrentCoRoutine->xEventListItem ) ); - } - } -/*-----------------------------------------------------------*/ - - static void prvCheckPendingReadyList( void ) - { - /* Are there any co-routines waiting to get moved to the ready list? These - * are co-routines that have been readied by an ISR. The ISR cannot access - * the ready lists itself. */ - while( listLIST_IS_EMPTY( &xPendingReadyCoRoutineList ) == pdFALSE ) - { - CRCB_t * pxUnblockedCRCB; - - /* The pending ready list can be accessed by an ISR. */ - portDISABLE_INTERRUPTS(); - { - pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyCoRoutineList ) ); - ( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) ); - } - portENABLE_INTERRUPTS(); - - ( void ) uxListRemove( &( pxUnblockedCRCB->xGenericListItem ) ); - prvAddCoRoutineToReadyQueue( pxUnblockedCRCB ); - } - } -/*-----------------------------------------------------------*/ - - static void prvCheckDelayedList( void ) - { - CRCB_t * pxCRCB; - - xPassedTicks = xTaskGetTickCount() - xLastTickCount; - - while( xPassedTicks ) - { - xCoRoutineTickCount++; - xPassedTicks--; - - /* If the tick count has overflowed we need to swap the ready lists. */ - if( xCoRoutineTickCount == 0 ) - { - List_t * pxTemp; - - /* Tick count has overflowed so we need to swap the delay lists. If there are - * any items in pxDelayedCoRoutineList here then there is an error! */ - pxTemp = pxDelayedCoRoutineList; - pxDelayedCoRoutineList = pxOverflowDelayedCoRoutineList; - pxOverflowDelayedCoRoutineList = pxTemp; - } - - /* See if this tick has made a timeout expire. */ - while( listLIST_IS_EMPTY( pxDelayedCoRoutineList ) == pdFALSE ) - { - pxCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedCoRoutineList ); - - if( xCoRoutineTickCount < listGET_LIST_ITEM_VALUE( &( pxCRCB->xGenericListItem ) ) ) - { - /* Timeout not yet expired. */ - break; - } - - portDISABLE_INTERRUPTS(); - { - /* The event could have occurred just before this critical - * section. If this is the case then the generic list item will - * have been moved to the pending ready list and the following - * line is still valid. Also the pvContainer parameter will have - * been set to NULL so the following lines are also valid. */ - ( void ) uxListRemove( &( pxCRCB->xGenericListItem ) ); - - /* Is the co-routine waiting on an event also? */ - if( pxCRCB->xEventListItem.pxContainer ) - { - ( void ) uxListRemove( &( pxCRCB->xEventListItem ) ); - } - } - portENABLE_INTERRUPTS(); - - prvAddCoRoutineToReadyQueue( pxCRCB ); - } - } - - xLastTickCount = xCoRoutineTickCount; - } -/*-----------------------------------------------------------*/ - - void vCoRoutineSchedule( void ) - { - /* Only run a co-routine after prvInitialiseCoRoutineLists() has been - * called. prvInitialiseCoRoutineLists() is called automatically when a - * co-routine is created. */ - if( pxDelayedCoRoutineList != NULL ) - { - /* See if any co-routines readied by events need moving to the ready lists. */ - prvCheckPendingReadyList(); - - /* See if any delayed co-routines have timed out. */ - prvCheckDelayedList(); - - /* Find the highest priority queue that contains ready co-routines. */ - while( listLIST_IS_EMPTY( &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) ) ) - { - if( uxTopCoRoutineReadyPriority == 0 ) - { - /* No more co-routines to check. */ - return; - } - - --uxTopCoRoutineReadyPriority; - } - - /* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the co-routines - * of the same priority get an equal share of the processor time. */ - listGET_OWNER_OF_NEXT_ENTRY( pxCurrentCoRoutine, &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) ); - - /* Call the co-routine. */ - ( pxCurrentCoRoutine->pxCoRoutineFunction )( pxCurrentCoRoutine, pxCurrentCoRoutine->uxIndex ); - } - } -/*-----------------------------------------------------------*/ - - static void prvInitialiseCoRoutineLists( void ) - { - UBaseType_t uxPriority; - - for( uxPriority = 0; uxPriority < configMAX_CO_ROUTINE_PRIORITIES; uxPriority++ ) - { - vListInitialise( ( List_t * ) &( pxReadyCoRoutineLists[ uxPriority ] ) ); - } - - vListInitialise( ( List_t * ) &xDelayedCoRoutineList1 ); - vListInitialise( ( List_t * ) &xDelayedCoRoutineList2 ); - vListInitialise( ( List_t * ) &xPendingReadyCoRoutineList ); - - /* Start with pxDelayedCoRoutineList using list1 and the - * pxOverflowDelayedCoRoutineList using list2. */ - pxDelayedCoRoutineList = &xDelayedCoRoutineList1; - pxOverflowDelayedCoRoutineList = &xDelayedCoRoutineList2; - } -/*-----------------------------------------------------------*/ - - BaseType_t xCoRoutineRemoveFromEventList( const List_t * pxEventList ) - { - CRCB_t * pxUnblockedCRCB; - BaseType_t xReturn; - - /* This function is called from within an interrupt. It can only access - * event lists and the pending ready list. This function assumes that a - * check has already been made to ensure pxEventList is not empty. */ - pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); - ( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) ); - vListInsertEnd( ( List_t * ) &( xPendingReadyCoRoutineList ), &( pxUnblockedCRCB->xEventListItem ) ); - - if( pxUnblockedCRCB->uxPriority >= pxCurrentCoRoutine->uxPriority ) - { - xReturn = pdTRUE; - } - else - { - xReturn = pdFALSE; - } - - return xReturn; - } - -#endif /* configUSE_CO_ROUTINES == 0 */ diff --git a/include/FreeRTOS.h b/include/FreeRTOS.h index 75be8648bb4..86e4dbde128 100644 --- a/include/FreeRTOS.h +++ b/include/FreeRTOS.h @@ -159,10 +159,6 @@ #error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details. #endif -#ifndef configUSE_CO_ROUTINES - #define configUSE_CO_ROUTINES 0 -#endif - #ifndef INCLUDE_vTaskPrioritySet #define INCLUDE_vTaskPrioritySet 0 #endif @@ -257,10 +253,8 @@ #define INCLUDE_xTaskGetCurrentTaskHandle 1 #endif -#if configUSE_CO_ROUTINES != 0 - #ifndef configMAX_CO_ROUTINE_PRIORITIES - #error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1. - #endif +#if ( defined( configUSE_CO_ROUTINES ) && configUSE_CO_ROUTINES != 0 ) + #warning Co-routines have been removed from FreeRTOS-Kernel versions released after V10.5.1. You can view previous versions of the FreeRTOS Kernel at github.com/freertos/freertos-kernel/tree/V10.5.1 . #endif #ifndef configUSE_DAEMON_TASK_STARTUP_HOOK diff --git a/include/croutine.h b/include/croutine.h deleted file mode 100644 index 63d1d94f742..00000000000 --- a/include/croutine.h +++ /dev/null @@ -1,753 +0,0 @@ -/* - * FreeRTOS Kernel - * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy of - * this software and associated documentation files (the "Software"), to deal in - * the Software without restriction, including without limitation the rights to - * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of - * the Software, and to permit persons to whom the Software is furnished to do so, - * subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS - * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR - * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER - * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - * - * https://www.FreeRTOS.org - * https://github.com/FreeRTOS - * - */ - -#ifndef CO_ROUTINE_H -#define CO_ROUTINE_H - -#ifndef INC_FREERTOS_H - #error "include FreeRTOS.h must appear in source files before include croutine.h" -#endif - -#include "list.h" - -/* *INDENT-OFF* */ -#ifdef __cplusplus - extern "C" { -#endif -/* *INDENT-ON* */ - -/* Used to hide the implementation of the co-routine control block. The - * control block structure however has to be included in the header due to - * the macro implementation of the co-routine functionality. */ -typedef void * CoRoutineHandle_t; - -/* Defines the prototype to which co-routine functions must conform. */ -typedef void (* crCOROUTINE_CODE)( CoRoutineHandle_t, - UBaseType_t ); - -typedef struct corCoRoutineControlBlock -{ - crCOROUTINE_CODE pxCoRoutineFunction; - ListItem_t xGenericListItem; /*< List item used to place the CRCB in ready and blocked queues. */ - ListItem_t xEventListItem; /*< List item used to place the CRCB in event lists. */ - UBaseType_t uxPriority; /*< The priority of the co-routine in relation to other co-routines. */ - UBaseType_t uxIndex; /*< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */ - uint16_t uxState; /*< Used internally by the co-routine implementation. */ -} CRCB_t; /* Co-routine control block. Note must be identical in size down to uxPriority with TCB_t. */ - -/** - * croutine. h - * @code{c} - * BaseType_t xCoRoutineCreate( - * crCOROUTINE_CODE pxCoRoutineCode, - * UBaseType_t uxPriority, - * UBaseType_t uxIndex - * ); - * @endcode - * - * Create a new co-routine and add it to the list of co-routines that are - * ready to run. - * - * @param pxCoRoutineCode Pointer to the co-routine function. Co-routine - * functions require special syntax - see the co-routine section of the WEB - * documentation for more information. - * - * @param uxPriority The priority with respect to other co-routines at which - * the co-routine will run. - * - * @param uxIndex Used to distinguish between different co-routines that - * execute the same function. See the example below and the co-routine section - * of the WEB documentation for further information. - * - * @return pdPASS if the co-routine was successfully created and added to a ready - * list, otherwise an error code defined with ProjDefs.h. - * - * Example usage: - * @code{c} - * // Co-routine to be created. - * void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // Variables in co-routines must be declared static if they must maintain value across a blocking call. - * // This may not be necessary for const variables. - * static const char cLedToFlash[ 2 ] = { 5, 6 }; - * static const TickType_t uxFlashRates[ 2 ] = { 200, 400 }; - * - * // Must start every co-routine with a call to crSTART(); - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // This co-routine just delays for a fixed period, then toggles - * // an LED. Two co-routines are created using this function, so - * // the uxIndex parameter is used to tell the co-routine which - * // LED to flash and how int32_t to delay. This assumes xQueue has - * // already been created. - * vParTestToggleLED( cLedToFlash[ uxIndex ] ); - * crDELAY( xHandle, uxFlashRates[ uxIndex ] ); - * } - * - * // Must end every co-routine with a call to crEND(); - * crEND(); - * } - * - * // Function that creates two co-routines. - * void vOtherFunction( void ) - * { - * uint8_t ucParameterToPass; - * TaskHandle_t xHandle; - * - * // Create two co-routines at priority 0. The first is given index 0 - * // so (from the code above) toggles LED 5 every 200 ticks. The second - * // is given index 1 so toggles LED 6 every 400 ticks. - * for( uxIndex = 0; uxIndex < 2; uxIndex++ ) - * { - * xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex ); - * } - * } - * @endcode - * \defgroup xCoRoutineCreate xCoRoutineCreate - * \ingroup Tasks - */ -BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, - UBaseType_t uxPriority, - UBaseType_t uxIndex ); - - -/** - * croutine. h - * @code{c} - * void vCoRoutineSchedule( void ); - * @endcode - * - * Run a co-routine. - * - * vCoRoutineSchedule() executes the highest priority co-routine that is able - * to run. The co-routine will execute until it either blocks, yields or is - * preempted by a task. Co-routines execute cooperatively so one - * co-routine cannot be preempted by another, but can be preempted by a task. - * - * If an application comprises of both tasks and co-routines then - * vCoRoutineSchedule should be called from the idle task (in an idle task - * hook). - * - * Example usage: - * @code{c} - * // This idle task hook will schedule a co-routine each time it is called. - * // The rest of the idle task will execute between co-routine calls. - * void vApplicationIdleHook( void ) - * { - * vCoRoutineSchedule(); - * } - * - * // Alternatively, if you do not require any other part of the idle task to - * // execute, the idle task hook can call vCoRoutineSchedule() within an - * // infinite loop. - * void vApplicationIdleHook( void ) - * { - * for( ;; ) - * { - * vCoRoutineSchedule(); - * } - * } - * @endcode - * \defgroup vCoRoutineSchedule vCoRoutineSchedule - * \ingroup Tasks - */ -void vCoRoutineSchedule( void ); - -/** - * croutine. h - * @code{c} - * crSTART( CoRoutineHandle_t xHandle ); - * @endcode - * - * This macro MUST always be called at the start of a co-routine function. - * - * Example usage: - * @code{c} - * // Co-routine to be created. - * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // Variables in co-routines must be declared static if they must maintain value across a blocking call. - * static int32_t ulAVariable; - * - * // Must start every co-routine with a call to crSTART(); - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // Co-routine functionality goes here. - * } - * - * // Must end every co-routine with a call to crEND(); - * crEND(); - * } - * @endcode - * \defgroup crSTART crSTART - * \ingroup Tasks - */ -#define crSTART( pxCRCB ) \ - switch( ( ( CRCB_t * ) ( pxCRCB ) )->uxState ) { \ - case 0: - -/** - * croutine. h - * @code{c} - * crEND(); - * @endcode - * - * This macro MUST always be called at the end of a co-routine function. - * - * Example usage: - * @code{c} - * // Co-routine to be created. - * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // Variables in co-routines must be declared static if they must maintain value across a blocking call. - * static int32_t ulAVariable; - * - * // Must start every co-routine with a call to crSTART(); - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // Co-routine functionality goes here. - * } - * - * // Must end every co-routine with a call to crEND(); - * crEND(); - * } - * @endcode - * \defgroup crSTART crSTART - * \ingroup Tasks - */ -#define crEND() } - -/* - * These macros are intended for internal use by the co-routine implementation - * only. The macros should not be used directly by application writers. - */ -#define crSET_STATE0( xHandle ) \ - ( ( CRCB_t * ) ( xHandle ) )->uxState = ( __LINE__ * 2 ); return; \ - case ( __LINE__ * 2 ): -#define crSET_STATE1( xHandle ) \ - ( ( CRCB_t * ) ( xHandle ) )->uxState = ( ( __LINE__ * 2 ) + 1 ); return; \ - case ( ( __LINE__ * 2 ) + 1 ): - -/** - * croutine. h - * @code{c} - * crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay ); - * @endcode - * - * Delay a co-routine for a fixed period of time. - * - * crDELAY can only be called from the co-routine function itself - not - * from within a function called by the co-routine function. This is because - * co-routines do not maintain their own stack. - * - * @param xHandle The handle of the co-routine to delay. This is the xHandle - * parameter of the co-routine function. - * - * @param xTickToDelay The number of ticks that the co-routine should delay - * for. The actual amount of time this equates to is defined by - * configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant portTICK_PERIOD_MS - * can be used to convert ticks to milliseconds. - * - * Example usage: - * @code{c} - * // Co-routine to be created. - * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // Variables in co-routines must be declared static if they must maintain value across a blocking call. - * // This may not be necessary for const variables. - * // We are to delay for 200ms. - * static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS; - * - * // Must start every co-routine with a call to crSTART(); - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // Delay for 200ms. - * crDELAY( xHandle, xDelayTime ); - * - * // Do something here. - * } - * - * // Must end every co-routine with a call to crEND(); - * crEND(); - * } - * @endcode - * \defgroup crDELAY crDELAY - * \ingroup Tasks - */ -#define crDELAY( xHandle, xTicksToDelay ) \ - if( ( xTicksToDelay ) > 0 ) \ - { \ - vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL ); \ - } \ - crSET_STATE0( ( xHandle ) ); - -/** - * @code{c} - * crQUEUE_SEND( - * CoRoutineHandle_t xHandle, - * QueueHandle_t pxQueue, - * void *pvItemToQueue, - * TickType_t xTicksToWait, - * BaseType_t *pxResult - * ) - * @endcode - * - * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine - * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks. - * - * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas - * xQueueSend() and xQueueReceive() can only be used from tasks. - * - * crQUEUE_SEND can only be called from the co-routine function itself - not - * from within a function called by the co-routine function. This is because - * co-routines do not maintain their own stack. - * - * See the co-routine section of the WEB documentation for information on - * passing data between tasks and co-routines and between ISR's and - * co-routines. - * - * @param xHandle The handle of the calling co-routine. This is the xHandle - * parameter of the co-routine function. - * - * @param pxQueue The handle of the queue on which the data will be posted. - * The handle is obtained as the return value when the queue is created using - * the xQueueCreate() API function. - * - * @param pvItemToQueue A pointer to the data being posted onto the queue. - * The number of bytes of each queued item is specified when the queue is - * created. This number of bytes is copied from pvItemToQueue into the queue - * itself. - * - * @param xTickToDelay The number of ticks that the co-routine should block - * to wait for space to become available on the queue, should space not be - * available immediately. The actual amount of time this equates to is defined - * by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant - * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example - * below). - * - * @param pxResult The variable pointed to by pxResult will be set to pdPASS if - * data was successfully posted onto the queue, otherwise it will be set to an - * error defined within ProjDefs.h. - * - * Example usage: - * @code{c} - * // Co-routine function that blocks for a fixed period then posts a number onto - * // a queue. - * static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // Variables in co-routines must be declared static if they must maintain value across a blocking call. - * static BaseType_t xNumberToPost = 0; - * static BaseType_t xResult; - * - * // Co-routines must begin with a call to crSTART(). - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // This assumes the queue has already been created. - * crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult ); - * - * if( xResult != pdPASS ) - * { - * // The message was not posted! - * } - * - * // Increment the number to be posted onto the queue. - * xNumberToPost++; - * - * // Delay for 100 ticks. - * crDELAY( xHandle, 100 ); - * } - * - * // Co-routines must end with a call to crEND(). - * crEND(); - * } - * @endcode - * \defgroup crQUEUE_SEND crQUEUE_SEND - * \ingroup Tasks - */ -#define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult ) \ - { \ - *( pxResult ) = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), ( xTicksToWait ) ); \ - if( *( pxResult ) == errQUEUE_BLOCKED ) \ - { \ - crSET_STATE0( ( xHandle ) ); \ - *pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 ); \ - } \ - if( *pxResult == errQUEUE_YIELD ) \ - { \ - crSET_STATE1( ( xHandle ) ); \ - *pxResult = pdPASS; \ - } \ - } - -/** - * croutine. h - * @code{c} - * crQUEUE_RECEIVE( - * CoRoutineHandle_t xHandle, - * QueueHandle_t pxQueue, - * void *pvBuffer, - * TickType_t xTicksToWait, - * BaseType_t *pxResult - * ) - * @endcode - * - * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine - * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks. - * - * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas - * xQueueSend() and xQueueReceive() can only be used from tasks. - * - * crQUEUE_RECEIVE can only be called from the co-routine function itself - not - * from within a function called by the co-routine function. This is because - * co-routines do not maintain their own stack. - * - * See the co-routine section of the WEB documentation for information on - * passing data between tasks and co-routines and between ISR's and - * co-routines. - * - * @param xHandle The handle of the calling co-routine. This is the xHandle - * parameter of the co-routine function. - * - * @param pxQueue The handle of the queue from which the data will be received. - * The handle is obtained as the return value when the queue is created using - * the xQueueCreate() API function. - * - * @param pvBuffer The buffer into which the received item is to be copied. - * The number of bytes of each queued item is specified when the queue is - * created. This number of bytes is copied into pvBuffer. - * - * @param xTickToDelay The number of ticks that the co-routine should block - * to wait for data to become available from the queue, should data not be - * available immediately. The actual amount of time this equates to is defined - * by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant - * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the - * crQUEUE_SEND example). - * - * @param pxResult The variable pointed to by pxResult will be set to pdPASS if - * data was successfully retrieved from the queue, otherwise it will be set to - * an error code as defined within ProjDefs.h. - * - * Example usage: - * @code{c} - * // A co-routine receives the number of an LED to flash from a queue. It - * // blocks on the queue until the number is received. - * static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // Variables in co-routines must be declared static if they must maintain value across a blocking call. - * static BaseType_t xResult; - * static UBaseType_t uxLEDToFlash; - * - * // All co-routines must start with a call to crSTART(). - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // Wait for data to become available on the queue. - * crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult ); - * - * if( xResult == pdPASS ) - * { - * // We received the LED to flash - flash it! - * vParTestToggleLED( uxLEDToFlash ); - * } - * } - * - * crEND(); - * } - * @endcode - * \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE - * \ingroup Tasks - */ -#define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult ) \ - { \ - *( pxResult ) = xQueueCRReceive( ( pxQueue ), ( pvBuffer ), ( xTicksToWait ) ); \ - if( *( pxResult ) == errQUEUE_BLOCKED ) \ - { \ - crSET_STATE0( ( xHandle ) ); \ - *( pxResult ) = xQueueCRReceive( ( pxQueue ), ( pvBuffer ), 0 ); \ - } \ - if( *( pxResult ) == errQUEUE_YIELD ) \ - { \ - crSET_STATE1( ( xHandle ) ); \ - *( pxResult ) = pdPASS; \ - } \ - } - -/** - * croutine. h - * @code{c} - * crQUEUE_SEND_FROM_ISR( - * QueueHandle_t pxQueue, - * void *pvItemToQueue, - * BaseType_t xCoRoutinePreviouslyWoken - * ) - * @endcode - * - * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the - * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR() - * functions used by tasks. - * - * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to - * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and - * xQueueReceiveFromISR() can only be used to pass data between a task and and - * ISR. - * - * crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue - * that is being used from within a co-routine. - * - * See the co-routine section of the WEB documentation for information on - * passing data between tasks and co-routines and between ISR's and - * co-routines. - * - * @param xQueue The handle to the queue on which the item is to be posted. - * - * @param pvItemToQueue A pointer to the item that is to be placed on the - * queue. The size of the items the queue will hold was defined when the - * queue was created, so this many bytes will be copied from pvItemToQueue - * into the queue storage area. - * - * @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto - * the same queue multiple times from a single interrupt. The first call - * should always pass in pdFALSE. Subsequent calls should pass in - * the value returned from the previous call. - * - * @return pdTRUE if a co-routine was woken by posting onto the queue. This is - * used by the ISR to determine if a context switch may be required following - * the ISR. - * - * Example usage: - * @code{c} - * // A co-routine that blocks on a queue waiting for characters to be received. - * static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * char cRxedChar; - * BaseType_t xResult; - * - * // All co-routines must start with a call to crSTART(). - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // Wait for data to become available on the queue. This assumes the - * // queue xCommsRxQueue has already been created! - * crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult ); - * - * // Was a character received? - * if( xResult == pdPASS ) - * { - * // Process the character here. - * } - * } - * - * // All co-routines must end with a call to crEND(). - * crEND(); - * } - * - * // An ISR that uses a queue to send characters received on a serial port to - * // a co-routine. - * void vUART_ISR( void ) - * { - * char cRxedChar; - * BaseType_t xCRWokenByPost = pdFALSE; - * - * // We loop around reading characters until there are none left in the UART. - * while( UART_RX_REG_NOT_EMPTY() ) - * { - * // Obtain the character from the UART. - * cRxedChar = UART_RX_REG; - * - * // Post the character onto a queue. xCRWokenByPost will be pdFALSE - * // the first time around the loop. If the post causes a co-routine - * // to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE. - * // In this manner we can ensure that if more than one co-routine is - * // blocked on the queue only one is woken by this ISR no matter how - * // many characters are posted to the queue. - * xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost ); - * } - * } - * @endcode - * \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR - * \ingroup Tasks - */ -#define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) \ - xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) ) - - -/** - * croutine. h - * @code{c} - * crQUEUE_SEND_FROM_ISR( - * QueueHandle_t pxQueue, - * void *pvBuffer, - * BaseType_t * pxCoRoutineWoken - * ) - * @endcode - * - * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the - * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR() - * functions used by tasks. - * - * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to - * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and - * xQueueReceiveFromISR() can only be used to pass data between a task and and - * ISR. - * - * crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data - * from a queue that is being used from within a co-routine (a co-routine - * posted to the queue). - * - * See the co-routine section of the WEB documentation for information on - * passing data between tasks and co-routines and between ISR's and - * co-routines. - * - * @param xQueue The handle to the queue on which the item is to be posted. - * - * @param pvBuffer A pointer to a buffer into which the received item will be - * placed. The size of the items the queue will hold was defined when the - * queue was created, so this many bytes will be copied from the queue into - * pvBuffer. - * - * @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become - * available on the queue. If crQUEUE_RECEIVE_FROM_ISR causes such a - * co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise - * *pxCoRoutineWoken will remain unchanged. - * - * @return pdTRUE an item was successfully received from the queue, otherwise - * pdFALSE. - * - * Example usage: - * @code{c} - * // A co-routine that posts a character to a queue then blocks for a fixed - * // period. The character is incremented each time. - * static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex ) - * { - * // cChar holds its value while this co-routine is blocked and must therefore - * // be declared static. - * static char cCharToTx = 'a'; - * BaseType_t xResult; - * - * // All co-routines must start with a call to crSTART(). - * crSTART( xHandle ); - * - * for( ;; ) - * { - * // Send the next character to the queue. - * crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult ); - * - * if( xResult == pdPASS ) - * { - * // The character was successfully posted to the queue. - * } - * else - * { - * // Could not post the character to the queue. - * } - * - * // Enable the UART Tx interrupt to cause an interrupt in this - * // hypothetical UART. The interrupt will obtain the character - * // from the queue and send it. - * ENABLE_RX_INTERRUPT(); - * - * // Increment to the next character then block for a fixed period. - * // cCharToTx will maintain its value across the delay as it is - * // declared static. - * cCharToTx++; - * if( cCharToTx > 'x' ) - * { - * cCharToTx = 'a'; - * } - * crDELAY( 100 ); - * } - * - * // All co-routines must end with a call to crEND(). - * crEND(); - * } - * - * // An ISR that uses a queue to receive characters to send on a UART. - * void vUART_ISR( void ) - * { - * char cCharToTx; - * BaseType_t xCRWokenByPost = pdFALSE; - * - * while( UART_TX_REG_EMPTY() ) - * { - * // Are there any characters in the queue waiting to be sent? - * // xCRWokenByPost will automatically be set to pdTRUE if a co-routine - * // is woken by the post - ensuring that only a single co-routine is - * // woken no matter how many times we go around this loop. - * if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) ) - * { - * SEND_CHARACTER( cCharToTx ); - * } - * } - * } - * @endcode - * \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR - * \ingroup Tasks - */ -#define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) \ - xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) ) - -/* - * This function is intended for internal use by the co-routine macros only. - * The macro nature of the co-routine implementation requires that the - * prototype appears here. The function should not be used by application - * writers. - * - * Removes the current co-routine from its ready list and places it in the - * appropriate delayed list. - */ -void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, - List_t * pxEventList ); - -/* - * This function is intended for internal use by the queue implementation only. - * The function should not be used by application writers. - * - * Removes the highest priority co-routine from the event list and places it in - * the pending ready list. - */ -BaseType_t xCoRoutineRemoveFromEventList( const List_t * pxEventList ); - -/* *INDENT-OFF* */ -#ifdef __cplusplus - } -#endif -/* *INDENT-ON* */ - -#endif /* CO_ROUTINE_H */ diff --git a/include/queue.h b/include/queue.h index 426de468fe0..02356766abb 100644 --- a/include/queue.h +++ b/include/queue.h @@ -1426,28 +1426,6 @@ BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FU BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION; UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION; -/* - * The functions defined above are for passing data to and from tasks. The - * functions below are the equivalents for passing data to and from - * co-routines. - * - * These functions are called from the co-routine macro implementation and - * should not be called directly from application code. Instead use the macro - * wrappers defined within croutine.h. - */ -BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, - const void * pvItemToQueue, - BaseType_t xCoRoutinePreviouslyWoken ); -BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, - void * pvBuffer, - BaseType_t * pxTaskWoken ); -BaseType_t xQueueCRSend( QueueHandle_t xQueue, - const void * pvItemToQueue, - TickType_t xTicksToWait ); -BaseType_t xQueueCRReceive( QueueHandle_t xQueue, - void * pvBuffer, - TickType_t xTicksToWait ); - /* * For internal use only. Use xSemaphoreCreateMutex(), * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling diff --git a/queue.c b/queue.c index 86dae0bc4f4..b75edc933ee 100644 --- a/queue.c +++ b/queue.c @@ -38,10 +38,6 @@ #include "task.h" #include "queue.h" -#if ( configUSE_CO_ROUTINES == 1 ) - #include "croutine.h" -#endif - /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined * for the header files above, but not in this file, in order to generate the @@ -2478,293 +2474,6 @@ BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ /*-----------------------------------------------------------*/ -#if ( configUSE_CO_ROUTINES == 1 ) - - BaseType_t xQueueCRSend( QueueHandle_t xQueue, - const void * pvItemToQueue, - TickType_t xTicksToWait ) - { - BaseType_t xReturn; - Queue_t * const pxQueue = xQueue; - - /* If the queue is already full we may have to block. A critical section - * is required to prevent an interrupt removing something from the queue - * between the check to see if the queue is full and blocking on the queue. */ - portDISABLE_INTERRUPTS(); - { - if( prvIsQueueFull( pxQueue ) != pdFALSE ) - { - /* The queue is full - do we want to block or just leave without - * posting? */ - if( xTicksToWait > ( TickType_t ) 0 ) - { - /* As this is called from a coroutine we cannot block directly, but - * return indicating that we need to block. */ - vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) ); - portENABLE_INTERRUPTS(); - return errQUEUE_BLOCKED; - } - else - { - portENABLE_INTERRUPTS(); - return errQUEUE_FULL; - } - } - } - portENABLE_INTERRUPTS(); - - portDISABLE_INTERRUPTS(); - { - if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) - { - /* There is room in the queue, copy the data into the queue. */ - prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); - xReturn = pdPASS; - - /* Were any co-routines waiting for data to become available? */ - if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) - { - /* In this instance the co-routine could be placed directly - * into the ready list as we are within a critical section. - * Instead the same pending ready list mechanism is used as if - * the event were caused from within an interrupt. */ - if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) - { - /* The co-routine waiting has a higher priority so record - * that a yield might be appropriate. */ - xReturn = errQUEUE_YIELD; - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - xReturn = errQUEUE_FULL; - } - } - portENABLE_INTERRUPTS(); - - return xReturn; - } - -#endif /* configUSE_CO_ROUTINES */ -/*-----------------------------------------------------------*/ - -#if ( configUSE_CO_ROUTINES == 1 ) - - BaseType_t xQueueCRReceive( QueueHandle_t xQueue, - void * pvBuffer, - TickType_t xTicksToWait ) - { - BaseType_t xReturn; - Queue_t * const pxQueue = xQueue; - - /* If the queue is already empty we may have to block. A critical section - * is required to prevent an interrupt adding something to the queue - * between the check to see if the queue is empty and blocking on the queue. */ - portDISABLE_INTERRUPTS(); - { - if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) - { - /* There are no messages in the queue, do we want to block or just - * leave with nothing? */ - if( xTicksToWait > ( TickType_t ) 0 ) - { - /* As this is a co-routine we cannot block directly, but return - * indicating that we need to block. */ - vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) ); - portENABLE_INTERRUPTS(); - return errQUEUE_BLOCKED; - } - else - { - portENABLE_INTERRUPTS(); - return errQUEUE_FULL; - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - portENABLE_INTERRUPTS(); - - portDISABLE_INTERRUPTS(); - { - if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) - { - /* Data is available from the queue. */ - pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; - - if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) - { - pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead; - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - - --( pxQueue->uxMessagesWaiting ); - ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); - - xReturn = pdPASS; - - /* Were any co-routines waiting for space to become available? */ - if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) - { - /* In this instance the co-routine could be placed directly - * into the ready list as we are within a critical section. - * Instead the same pending ready list mechanism is used as if - * the event were caused from within an interrupt. */ - if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) - { - xReturn = errQUEUE_YIELD; - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - xReturn = pdFAIL; - } - } - portENABLE_INTERRUPTS(); - - return xReturn; - } - -#endif /* configUSE_CO_ROUTINES */ -/*-----------------------------------------------------------*/ - -#if ( configUSE_CO_ROUTINES == 1 ) - - BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, - const void * pvItemToQueue, - BaseType_t xCoRoutinePreviouslyWoken ) - { - Queue_t * const pxQueue = xQueue; - - /* Cannot block within an ISR so if there is no space on the queue then - * exit without doing anything. */ - if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) - { - prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); - - /* We only want to wake one co-routine per ISR, so check that a - * co-routine has not already been woken. */ - if( xCoRoutinePreviouslyWoken == pdFALSE ) - { - if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) - { - if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) - { - return pdTRUE; - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - - return xCoRoutinePreviouslyWoken; - } - -#endif /* configUSE_CO_ROUTINES */ -/*-----------------------------------------------------------*/ - -#if ( configUSE_CO_ROUTINES == 1 ) - - BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, - void * pvBuffer, - BaseType_t * pxCoRoutineWoken ) - { - BaseType_t xReturn; - Queue_t * const pxQueue = xQueue; - - /* We cannot block from an ISR, so check there is data available. If - * not then just leave without doing anything. */ - if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) - { - /* Copy the data from the queue. */ - pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; - - if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) - { - pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead; - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - - --( pxQueue->uxMessagesWaiting ); - ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); - - if( ( *pxCoRoutineWoken ) == pdFALSE ) - { - if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) - { - if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) - { - *pxCoRoutineWoken = pdTRUE; - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - } - else - { - mtCOVERAGE_TEST_MARKER(); - } - - xReturn = pdPASS; - } - else - { - xReturn = pdFAIL; - } - - return xReturn; - } - -#endif /* configUSE_CO_ROUTINES */ -/*-----------------------------------------------------------*/ - #if ( configQUEUE_REGISTRY_SIZE > 0 ) void vQueueAddToRegistry( QueueHandle_t xQueue, From b752fedbb7c6fb1e38a6d67863f9c66ff6bae13f Mon Sep 17 00:00:00 2001 From: Paul Bartell Date: Tue, 22 Nov 2022 11:03:05 -0800 Subject: [PATCH 2/4] Remove coroutine terms from lexicon --- .github/lexicon.txt | 26 -------------------------- 1 file changed, 26 deletions(-) diff --git a/.github/lexicon.txt b/.github/lexicon.txt index 6e04c246c3c..ac548204172 100644 --- a/.github/lexicon.txt +++ b/.github/lexicon.txt @@ -317,7 +317,6 @@ coproc coprocessor coprocessors coreid -coroutinehandle covfs cp cpacr @@ -344,16 +343,10 @@ cpu cr crc crcb -crcoroutine -crdelay creadonlyarray creadwritearray createevent -crend crgint -croutine -crqueue -crstart crt crtv crxedchar @@ -1517,14 +1510,11 @@ prvaddcurrenttasktodelayedlist prvcheckinterfaces prvchecktaskswaitingtermination prvcopydatatoqueue -prvcoroutineflashtask -prvcoroutineflashworktask prvdeletetcb prvexitfunction prvgettimens prvheapinit prvidletask -prvinitialisecoroutinelists prvinitialisemutex prvinitialisenewstreambuffer prvinitialisenewtimer @@ -1638,15 +1628,11 @@ pxblocktoinsert pxcallbackfunction pxcode pxcontainer -pxcoroutinecode -pxcoroutinewoken pxcrcb pxcreatedtask -pxcurrentcoroutine pxcurrenttcb pxcurrenttcbconst pxcurrenttimerlist -pxdelayedcoroutinelist pxdelayedtasklist pxend pxendofstack @@ -1681,7 +1667,6 @@ pxnextfreeblock pxnexttcb pxoriginalsp pxoriginaltos -pxoverflowdelayedcoroutinelist pxoverflowdelayedtasklist pxowner pxportinitialisestack @@ -1691,7 +1676,6 @@ pxqueue pxqueuebuffer pxqueuesetcontainer pxramstack -pxreadycoroutinelists pxreadytaskslists pxreceivecompletedcallback pxregions @@ -2463,7 +2447,6 @@ uxtopreadypriority uxtopusedpriority uxvariabletoincrement uxwantedbytes -vacoroutine vadifferenttask vafunction val @@ -2492,7 +2475,6 @@ vbr vbufferisr vcallbackfunction vclearinterruptmask -vcoroutineschedule vddcore vec vectactive @@ -2502,7 +2484,6 @@ ver veventgroupclearbitscallback veventgroupdelete veventgroupsetbitscallback -vflashcoroutine vfp vfunction vic @@ -2565,14 +2546,12 @@ vqueuedelete vqueueunregisterqueue vr vraiseprivilege -vreceivingcoroutine vreg vresetprivilege vrestorecontextoffirsttask vrpm vsemaphorecreatebinary vsemaphoredelete -vsendingcoroutine vsetbacklightstate vsoftwareinterruptentry vstartfirsttask @@ -2706,9 +2685,6 @@ xcommandtime xcommsrxqueue xconsttickcount xcopyposition -xcoroutinecreate -xcoroutinepreviouslywoken -xcoroutinequeue xcount xcreatedeventgroup xcrwokenbypost @@ -2718,7 +2694,6 @@ xdd xdddd xdeadbeef xdelay -xdelayedcoroutinelist xdelayedtasklist xdelaytime xe @@ -2865,7 +2840,6 @@ xpar xparameters xpendedcounts xpendedticks -xpendingreadycoroutinelist xpendingreadylist xperiod xportgetcoreid From b16319de048f0e01c8757991aaba1c41fe0533d4 Mon Sep 17 00:00:00 2001 From: Paul Bartell Date: Tue, 22 Nov 2022 11:03:24 -0800 Subject: [PATCH 3/4] CMakeLists.txt: Remove croutine.c from CMakeLists.txt CMakeLists.txt: Remove croutine.c --- CMakeLists.txt | 1 - 1 file changed, 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 205c19a4817..1d4a7799f7c 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -225,7 +225,6 @@ endif() add_subdirectory(portable) add_library(freertos_kernel STATIC - croutine.c event_groups.c list.c queue.c From 3fd8cf4cb1ff699687915006557e02945e993fa8 Mon Sep 17 00:00:00 2001 From: Paul Bartell Date: Tue, 22 Nov 2022 11:04:02 -0800 Subject: [PATCH 4/4] README.md: Remove coroutine references. --- README.md | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index d147f884077..ca0a7ddbc45 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ ## Getting started -This repository contains FreeRTOS kernel source/header files and kernel ports only. This repository is referenced as a submodule in [FreeRTOS/FreeRTOS](https://github.com/FreeRTOS/FreeRTOS) repository, which contains pre-configured demo application projects under ```FreeRTOS/Demo``` directory. +This repository contains FreeRTOS kernel source/header files and kernel ports only. This repository is referenced as a submodule in [FreeRTOS/FreeRTOS](https://github.com/FreeRTOS/FreeRTOS) repository, which contains pre-configured demo application projects under ```FreeRTOS/Demo``` directory. The easiest way to use FreeRTOS is to start with one of the pre-configured demo application projects. That way you will have the correct FreeRTOS source files included, and the correct include paths configured. Once a demo application is building and executing you can remove the demo application files, and start to add in your own application source files. See the [FreeRTOS Kernel Quick Start Guide](https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html) for detailed instructions and other useful links. @@ -66,19 +66,18 @@ git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git ``` ## Repository structure -- The root of this repository contains the three files that are common to -every port - list.c, queue.c and tasks.c. The kernel is contained within these -three files. croutine.c implements the optional co-routine functionality - which -is normally only used on very memory limited systems. +- The root of this repository contains the three files that are common to +every port - list.c, queue.c and tasks.c. The kernel is contained within these +three files. -- The ```./portable``` directory contains the files that are specific to a particular microcontroller and/or compiler. +- The ```./portable``` directory contains the files that are specific to a particular microcontroller and/or compiler. See the readme file in the ```./portable``` directory for more information. - The ```./include``` directory contains the real time kernel header files. ### Code Formatting -FreeRTOS files are formatted using the "uncrustify" tool. The configuration file used by uncrustify can be found in the [FreeRTOS/FreeRTOS repository](https://github.com/FreeRTOS/FreeRTOS/blob/main/tools/uncrustify.cfg). +FreeRTOS files are formatted using the "uncrustify" tool. The configuration file used by uncrustify can be found in the [FreeRTOS/FreeRTOS repository](https://github.com/FreeRTOS/FreeRTOS/blob/main/tools/uncrustify.cfg). ### Spelling -*lexicon.txt* contains words that are not traditionally found in an English dictionary. It is used by the spellchecker to verify the various jargon, variable names, and other odd words used in the FreeRTOS code base. If your pull request fails to pass the spelling and you believe this is a mistake, then add the word to *lexicon.txt*. +*lexicon.txt* contains words that are not traditionally found in an English dictionary. It is used by the spellchecker to verify the various jargon, variable names, and other odd words used in the FreeRTOS code base. If your pull request fails to pass the spelling and you believe this is a mistake, then add the word to *lexicon.txt*. Note that only the FreeRTOS Kernel source files are checked for proper spelling, the portable section is ignored.