forked from Neywiny/merge-sort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDylComp.py
executable file
·433 lines (413 loc) · 15.9 KB
/
DylComp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#! /usr/bin/python3
import pickle
import numpy as np
from scipy.stats import kendalltau
from ROC1 import rocxy
np.seterr(all="ignore")
from warnings import filterwarnings
filterwarnings("ignore")
import socket
class Comparator:
"""A class for comparing 2 values.
Controlled with the optimizaiton level and if you want random decisions or not
Either provide objects in init or call .genLookup before you do any comparing
Optimization levels: will not optimize, store result, do abc association, do recursive association
Rand: defaults to False. If True will create data from random distributions with seed parameter
"""
def __init__(self, objects: list = None, level: int = 3, rand: bool=False, seed: int=None):
self.clearHistory()
self.rand: bool = rand
self.seed: int = seed
self.level: int = level
self.compHistory: list = list()
self.dupCount: int = 0
self.optCount: int = 0
self.counts: dict = dict()
self.seps: dict = dict()
self.bRecord: bool = True
if objects != None:
self.genLookup(objects)
if rand:
self.n0 = self.n1 = len(objects) // 2
self.n1 += len(objects) % 2
self.genRand(self.n0, self.n1, 1.7, 'normal')
self.last: tuple = None
self.resetPC()
self.desHist: list = list()
def __len__(self) -> int:
"""Returns either the number of comparisons done"""
return self.compHistory if isinstance(self.compHistory, int) else len(self.compHistory)
def resetPC(self):
"""Resets the pc statistics. Call this once per layer if you only want that layer's PC"""
self.c: int = 0
self.pc: list = list()
def kendalltau(self, predicted: list) -> float:
"""Returns the kendalltau statistic between the predicted image ID ordering and the true ordering of the image IDs with respect to latent score.
This method filters image IDs by what's in predicted, so only the ids in predicted are used."""
return kendalltau(self.getLatentScore(predicted), list(filter(lambda x: x in self.getLatentScore(predicted), sorted(self.vals))))[0]
def genRand(self, n0: int, n1: int, sep: float, dist: str):
"""Generates the random data. If a seed has not previously been provided, it will be assigned here.
This new seeding may not work on Windows, so Windows users should assign the seed on their own."""
# get a random seed for each node and each process on that node, and the time
self.n0: int = n0
self.n1: int = n1
if self.seed == None:
from os import getpid, uname
from time import time
self.seed: int = (int(str(ord(uname()[1][-1])) + str(getpid()) + str(int(time()))) % 2**31)
np.random.seed(self.seed)
if dist == 'normal':
self.vals: tuple = (tuple(np.random.normal(size=n0,loc=0)) + tuple(np.random.normal(size=n1,loc=sep)))
elif dist == 'exponential':
self.vals: tuple = (tuple(np.random.exponential(size=n0,scale=1)) + tuple(np.random.exponential(size=n1,scale=sep)))
else:
raise NotImplementedError("distibution must be one of ['normal','exponential']")
def empiricROC(self) -> dict:
"""Generates and stores the empiric ROC if it needs to.
Returns the stored ROC curve."""
empiric: dict = getattr(self, 'empiric', None)
if empiric == None:
self.empiric = rocxy(self.vals[self.n0:], self.vals[:self.n0])
return self.empiric
def record(self, vals: list):
"""Record that these values were seen.
This is automatically called by min and max."""
if not self.bRecord:
return
for val in vals:
self.counts[val] += 1
#count minimum separations
self.seps[val].append(len(self))
if self.last:
if val in self.last:
self.dupCount += 1
self.compHistory.append(tuple(vals))
self.last = tuple(vals)
def getLatentScore(self, imgID: int) -> float:
"""gets the latent score of a given imgID or array of imgIDs.
If only one index is provided, also returns if the image is from the disease negative distribution."""
if isinstance(imgID, (tuple, list)):
return [self.getLatentScore(val)[0] for val in imgID]
if self.rand:
return self.vals[imgID], imgID < self.n0
else:
return imgID
def genSeps(self) -> list:
"""Goes throguh the stored records and returns a list of the minimum separations.
If there is no minimum separation (the image has not been seen more than once), uses 2*(n0+n1) as a palceholder"""
minseps: list = [2*len(self.objects) for i in range(len(self.objects))]
for img, times in self.seps.items():
if len(times) > 1:
minseps[img]: int = min(map(lambda x: times[x + 1] - times[x], range(len(times) - 1)))
return minseps
def genLookup(self, objects: list):
"""Generate the lookup table for each object provided"""
self.lookup:dict = dict()
self.objects: list = objects
for datum in objects:
self.lookup[datum]: dict = dict()
self.clearHistory()
def clearHistory(self):
"""Clears the history statistics of comparisons"""
if hasattr(self, "objects"):
self.compHistory: list = list()
self.last: tuple = None
self.dupCount: int = 0
for datum in self.objects:
self.counts[datum]: int = 0
self.seps[datum]: list = list()
def learn(self, arr: list, img: int=None, maxi: bool=False):
"""Learn the order of the array provided, assuming the current optimization level allows it
if img is provided, learns the arr w.r.t. the img and if it is max or min. arr can also be
a filename, in whichcase it will read the file to learn"""
if isinstance(arr, str):
with open(arr) as f:
f.readline()
for line in f:
line: list = line.rstrip().replace(' ,', ', ').split(', ')
if len(line) == 3: # valid comparison
self.learn([int(line[0]), int(line[1])], int(line[2]), maxi=True)
else:
if img == None and self.level > 1:
for i, a in enumerate(arr):
for b in arr[i + 1:]:
self.lookup[a][b]: bool = True
self.lookup[b][a]: bool = False
if self.level > 2:
Comparator.optimize(self.objects, self.lookup, True, a, b)
elif img != None and self.level > 1:
for b in arr:
if b != img:
self.lookup[img][b]: bool = not maxi
self.lookup[b][img]: bool = maxi
if self.level > 2:
Comparator.optimize(self.objects, self.lookup, maxi, b, img)
def max(self, arr, tryingAgain=False) -> (int, int):
"""Gets the maximum of the array with respect to the latent scores.
tryingAgain should always be False unless a network comparator is used.
Returns the undex of the maximum ID and the maximum ID."""
if len(arr) == 0 or tryingAgain:
raise NotImplementedError("I can't take the max of nothing")
if len(arr) == 2:
a,b = arr
if b in self.lookup[a].keys():
# cache hit
if self.lookup[a][b]: # a < b
return 1, b
else:
return 0, a
elif a in self.lookup[b].keys():
# cache hit
if self.lookup[b][a]:
return 0, a
else:
return 1, b
self.record(arr)
maxVal: int = arr[0]
maxScore: float = self.getLatentScore(arr[0])[0] if self.rand else arr[0]
maxInd: int = 0
for i, imageID in enumerate(arr[1:], start=1):
score = self.getLatentScore(imageID)[0] if self.rand else arr[i]
if score > maxScore:
maxInd: int = i
maxVal: int = imageID
maxScore: float = score
self.learn(arr, maxVal, True)
self.updatePC(arr, maxVal, max(arr))
self.desHist.append(maxVal)
return maxInd, maxVal
def min(self, arr) -> (int, int):
"""Gets the minimum of the array with respect to the latent scores.
Returns the undex of the minimum ID and the minimum ID."""
if len(arr) == 0:
raise NotImplementedError("I can't take the min of nothing")
if len(arr) == 2:
a,b = arr
if b in self.lookup[a].keys():
# cache hit
if self.lookup[a][b]: # a < b
return 0, a
else:
return 1, b
elif a in self.lookup[b].keys():
# cache hit
if self.lookup[b][a]:
return 1, b
else:
return 0, a
self.record(arr)
minVal: int = arr[0]
minScore: float = self.getLatentScore(arr[0])[0] if self.rand else arr[0]
minInd: int = 0
for i, imageID in enumerate(arr[1:], start=1):
score = self.getLatentScore(imageID)[0] if self.rand else arr[i]
if score < minScore:
minInd: int = i
minVal: int = imageID
minScore: float = score
self.learn(arr, minVal, False)
self.updatePC(arr, minVal, min(arr))
self.desHist.append(arr[int(not minInd)])
return minInd, minVal
def updatePC(self, arr: list, guess, answer):
"""If the ids in arr are from different distibutions, adds 1 to the pc denominator.
If the guess was the answer, adds 1 to the pc numerator."""
if self.rand and (arr[0] < self.n0) ^ (arr[1] < self.n0):
if guess == answer:
self.c += 1
self.pc.append(self.c / (len(self.pc) + 1))
@staticmethod
def optimize(objects: list, lookup: dict, res: bool, a, b) -> int:
"""Recursive optimization algorithm for adding a node to a fully connected graph.
Returns the number of optimizations it did."""
if objects:
nObjects: list = []
for c in list(lookup[b]):
# for all c s.t. c is a neighbor of b
if c in objects and lookup[b][c] == res and c != a and c not in lookup[a]:
# s.t. a > b > c or a < b < c
nObjects.append(c)
# print("optimized", a, c)
lookup[a][c]:bool = res
lookup[c][a]:bool = not res
return 1 + Comparator.optimize(nObjects, lookup, res, b, c)
return 0
class NetComparator(Comparator):
"""A class for doing comparisons over a network."""
# keep payloads to 10 bytes, try for little endian
# 'op codes'
# cmd -> [0010, 8 bytes, 0011]
# max -> [0010 (image 1 32 bits) (image 2 32 bits) 0011], receive 2 32 bit ints denoting index and val respectively
def __init__(self, ip: str, port: int, recorder=None, objects: list = None, level: int = 3):
super(NetComparator, self).__init__(objects, level)
self.ip: str = ip
self.port: int = port
self.currLayer: int = 1
self.aucs: list = list()
self.recorder = recorder
self.recorder.write('Image 1,Image 2,Chosen\n')
self.desHist: list = list()
self.plots: list = list()
def __enter__(self):
self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print("getting connected")
self.s.bind(('', self.port))
self.s.listen(1)
conn, addr = self.s.accept()
print('Connection address:', addr)
print("connection established")
conn.send(b"I'm ready!")
data: bytes = conn.recv(10)
if data[0] == 2 and data[9] == 3: #valid frame
self.n0, self.n1 = int.from_bytes(data[1:5], 'little'), int.from_bytes(data[5:9], 'little')
print("go flight", self.n0, self.n1)
self.conn = conn
return self
def __exit__(self, *args):
self.conn.send(b"I'm going!")
self.conn.close()
self.s.close()
def min(self, arr: list) -> (int, int):
"""Gets the minimum of the array with respect to the latent scores as the opposite of the maximum.
Returns the undex of the minimum ID and the minimum ID."""
res = self.max(arr)
if res != 'done':
maxi, _ = res
mini: int = maxi ^ 1
self.learn(arr, arr[mini], False)
return mini, arr[mini]
else:
return 'done'
def max(self, arr: list, tryingAgain=False) -> (int, int):
"""Gets the maximum of the array with respect to the latent scores.
tryingAgain is only used for if there was a hiccup in the network.
Returns the undex of the maximum ID and the maximum ID."""
if not tryingAgain:
data: bytes = self.conn.recv(10)
if not data:
return 'done'
if data != b"send pics!":
print(data, self.desHist)
raise ConnectionError("shoulda gotten that")
self.record(arr)
flipped: bool = np.random.random() > 0.5
if flipped:
payload: bytes = b'\x02' + arr[1].to_bytes(4, 'little') + arr[0].to_bytes(4, 'little') + b'\x03'
else:
payload: bytes = b'\x02' + arr[0].to_bytes(4, 'little') + arr[1].to_bytes(4, 'little') + b'\x03'
self.conn.send(payload)
results: bytes = self.conn.recv(10)
if len(results) == 0:
return 'done'
if results[0] == 2 and results[9] == 3: #valid frame
maxInd: int = int.from_bytes(results[1:5], 'little')
maxVal: int = int.from_bytes(results[5:9], 'little')
elif results == b"send pics!":
return self.max(arr, True)
else:
raise ConnectionError("didn't get a response " + results.decode("utf-8"))
maxInd ^= flipped
self.updatePC(arr, maxVal, max(arr))
self.learn(arr, maxVal, True)
self.desHist.append(maxVal)
self.recorder.write(str(self.compHistory[-1])[1:-1] + f" ,{maxVal}\n")
return maxInd, maxVal
if __name__ == "__main__":
from sys import argv
if len(argv != 4):
print("Usage:")
print(f"{__file__} <log file output> <port> <roc file output>")
else:
from DylData import continuousScale
from DylSort import treeMergeSort
from DylMath import avROC, genROC, calcNLayers
import matplotlib.pyplot as plt
from os import replace
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(nrows=2, ncols=3)
with open(argv[1], "w") as f, NetComparator('127.0.0.1', int(argv[2]), f) as comp:
data, D0, D1 = continuousScale(comp.n0, comp.n1)
comp.genLookup(data)
comp.layers = layers = calcNLayers(comp.n0 + comp.n1)
xVals: list = list(range(1, layers + 1))
xLabels: list = ['' for _ in xVals]
aucs: np.ndarray = np.full((layers,), np.nan)
varEstimates: np.ndarray = np.full((layers,), np.nan)
hmnEstimates: np.ndarray = np.full((layers, layers), np.nan)
compLens: np.ndarray = np.full((layers,), np.nan)
info: list = [np.nan for i in range(layers)]
comp.aucs = aucs
comp.pax = ax1
comp.plt = plt
ax1.set_ylabel("AUC")
ax1.set_xlabel("comparisons")
ax1.set_xticks(xVals)
ax1.set_xticklabels(xLabels, rotation="vertical")
ax1.set_ylim(top=1, bottom=0.4)
ax2.plot([], [], 'b-', lw=5, label="predictions")
ax2.plot([], [], 'r.-', label="measured")
ax2.legend()
ax2.set_ylabel("variance")
ax2.set_xlabel("comparisons")
ax2.set_xticks(xVals)
ax2.set_xticklabels(xLabels, rotation="vertical")
ax3.set_ylabel("${\Delta \mathrm{var^{-1}}}/{\Delta \mathrm{Comparisons}}$")
ax3.set_xlabel("comparisons")
ax3.set_xticklabels(xLabels, rotation="vertical")
ax3.set_xticks(xVals)
ax4.set_ylabel("Comparisons")
ax4.set_xlabel("Layer")
ax5.set_xticks(range(1, layers + 1))
ax5.set_xlim(left=-0.01, right=1.01)
ax5.set_ylim(bottom=-0.01, top=1.01)
ax5.set_aspect('equal', 'box')
fig.delaxes(ax6)
plt.tight_layout()
plt.savefig("temp.svg")
replace("temp.svg", "figure.svg")
comp.xVals = xVals
comp.xLabels = xLabels
print(data)
plots = list()
for currLayer, (groups, stats) in enumerate(treeMergeSort(data, comp, [(D0, D1)], combGroups=False)):
print(groups)
rocs = list()
for group in groups:
rocs.append(genROC(group, D0, D1))
avgROC = avROC(rocs)
xLabels[currLayer] = len(comp)
auc, varEstimate, hanleyMcNeil, lowBoot, highBoot, lowSine, highSine, smVAR, npVAR, *estimates = stats
f.write(''.join([str(val)+',' for val in stats]))
f.write('\n')
aucs[currLayer]: float = auc
varEstimates[currLayer]: float = varEstimate
hmnEstimates[currLayer]: np.ndarray = np.append(np.full((layers - len(estimates)), np.nan), estimates)
compLens[currLayer]: int = len(comp)
for plot in plots:
for line in plot:
try:
line.remove()
except ValueError:
pass
comp.currLayer += 1
plots.append(ax1.plot(xVals, aucs, 'b.-', label="Layer AUC"))
ax1.set_xticklabels(xLabels, rotation="vertical")
plots.append(ax2.plot(xVals, varEstimates, 'r.-', label="measured"))
hmnEstimates[currLayer][currLayer] = varEstimate
ax2.plot(xVals, hmnEstimates[currLayer], 'b-', lw=5, label=f"prediction {currLayer + 1}", alpha=0.2)
ax2.set_xticklabels(xLabels, rotation="vertical")
if currLayer > 0:
info[currLayer]: float = ((1 / varEstimates[currLayer]) - (1 / varEstimates[currLayer - 1])) / (compLens[currLayer] - compLens[currLayer - 1])
else:
plots.append(ax3.plot(xVals, xVals, lw=0))
plots.append(ax3.plot(xVals, info, c='orange', marker='.', ls='-'))
ax3.set_xticklabels(xLabels, rotation="vertical")
plots.append(ax4.plot(xVals, compLens, '.-'))
plots.append(ax5.plot(*avgROC))
if len(groups) == 16:
roc4: dict = avgROC
plt.tight_layout()
ax5.set_aspect('equal', 'box')
plt.savefig("temp.svg")
replace("temp.svg", "figure.svg")
with open(argv[3], "wb") as f:
pickle.dump((avgROC, roc4), f)