-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_mnist_classification.py
100 lines (72 loc) · 3.28 KB
/
lstm_mnist_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# this is data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
lr = 0.001
training_iters = 100000
batch_size = 128
n_inputs = 28 # image shape:28 * 28
n_steps = 28 # time steps
n_hidden_units = 256
n_classes = 10
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
weights = {
# (28, 128)
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
# (128, 10)
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
# (128)
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units])),
# (10)
'out': tf.Variable(tf.constant(0.1, shape=[n_classes]))
}
def RNN(X, weights, biases):
# hidden layer for input to cell
# X (128, 28 steps, 28 inputs) ===> (128 * 28, 28 inputs)
X = tf.reshape(X, [-1, n_inputs])
# X_in (128 * 28, 128)
X_in = tf.matmul(X, weights['in']) + biases['in']
# X_in (128 batch, 28 steps, 128 hidden)
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
# cell
# lstm cell is divided into two parts (c_state, m_state)
# c_state means last cell state, m_state means output state
# 其中c代表Ct的最后时间的输出,h代表Ht最后时间的输出,h是等于最后一个时间的output的
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
# lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
_init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
outputs, states = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)
# Method 2 for cell calculation
# outputs = []
# states = _init_state
# with tf.variable_scope("RNN"):
# for time_step in range(n_steps):
# if time_step > 0:
# tf.get_variable_scope().reuse_variables() # LSTM同一曾参数共享,
# (cell_out, states) = lstm_cell(X_in[:, time_step, :], states)
# outputs.append(cell_out)
# hidden layer for outputs as the final results
results = tf.matmul(states[1], weights['out']) + biases['out']
# or unpack to list [(batch, outputs)...] * steps
# outputs = tf.unstack(tf.transpose(outputs, [1, 0, 2]))
# results = tf.matmul(outputs[-1], weights['out']) + biases['out']
return results
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.arg_max(pred, 1), tf.arg_max(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run([train_op], feed_dict={x:batch_xs, y:batch_ys})
if step % 20 == 0:
print(sess.run(accuracy, feed_dict={x:batch_xs, y:batch_ys}))
step += 1