forked from anastasiaangelo/ProjectAnastasia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulations.py
234 lines (184 loc) · 7.52 KB
/
simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Script to optimise the Hamiltonian, starting directly from the Ising Hamiltonian
# or build the Pauli representation from the problem may be more efficient rather than converting it
# too complex though for now
# %%
import numpy as np
import pandas as pd
import time
from copy import deepcopy
num_rot = 2
########################### Configure the hamiltonian from the values calculated classically with pyrosetta ############################
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N = int(num/num_rot)
num_qubits = num
print('Qii values: \n', q)
df = pd.read_csv("energy_files/two_body_terms.csv")
value = df['E_ij'].values
Q = np.zeros((num,num))
n = 0
for i in range(0, num-2):
if i%2 == 0:
Q[i][i+2] = deepcopy(value[n])
Q[i+2][i] = deepcopy(value[n])
Q[i][i+3] = deepcopy(value[n+1])
Q[i+3][i] = deepcopy(value[n+1])
n += 2
elif i%2 != 0:
Q[i][i+1] = deepcopy(value[n])
Q[i+1][i] = deepcopy(value[n])
Q[i][i+2] = deepcopy(value[n+1])
Q[i+2][i] = deepcopy(value[n+1])
n += 2
print('\nQij values: \n', Q)
H = np.zeros((num,num))
for i in range(num):
for j in range(num):
if i != j:
H[i][j] = np.multiply(0.25, Q[i][j])
for i in range(num):
H[i][i] = -(0.5 * q[i] + sum(0.25 * Q[i][j] for j in range(num) if j != i))
print('\nH: \n', H)
# add penalty terms to the matrix so as to discourage the selection of two rotamers on the same residue - implementation of the Hammings constraint
def add_penalty_term(M, penalty_constant, residue_pairs):
for i, j in residue_pairs:
M[i][j] += penalty_constant
return M
P = 6
def generate_pairs(N):
pairs = [(i, i+1) for i in range(0, 2*N, 2)]
return pairs
pairs = generate_pairs(N)
M = deepcopy(H)
M = add_penalty_term(M, P, pairs)
# %% ################################################ Classical optimisation ###########################################################
# from scipy.sparse.linalg import eigsh
# Z_matrix = np.array([[1, 0], [0, -1]])
# identity = np.eye(2)
# def construct_operator(qubit_indices, num_qubits):
# operator = np.eye(1)
# for qubit in range(num_qubits):
# if qubit in qubit_indices:
# operator = np.kron(operator, Z_matrix)
# else:
# operator = np.kron(operator, identity)
# return operator
# C = np.zeros((2**num_qubits, 2**num_qubits))
# for i in range(num_qubits):
# operator = construct_operator([i], num_qubits)
# C += H[i][i] * operator
# for i in range(num_qubits):
# for j in range(i+1, num_qubits):
# operator = construct_operator([i, j], num_qubits)
# C += H[i][j] * operator
# print('C :\n', C)
# def create_hamiltonian(pairs, P, num_qubits):
# H_pen = np.zeros((2**num_qubits, 2**num_qubits))
# def tensor_term(term_indices):
# term = [Z_matrix if i in term_indices else identity for i in range(num_qubits)]
# result = term[0]
# for t in term[1:]:
# result = np.kron(result, t)
# return result
# for pair in pairs:
# term = tensor_term(pair)
# H_pen += P * term
# return H_pen
# H_penalty = create_hamiltonian(pairs, P, num_qubits)
# H_tot = C + H_penalty
# # Extract the ground state energy and wavefunction
# # using sparse representation so as to be able to generalise to larger systems
# eigenvalues, eigenvectors = eigsh(H_tot, k=num, which='SA')
# print("\n\nClassical optimisation results. \n")
# print("Ground energy eigsh: ", eigenvalues[0])
# print("ground state wavefuncion eigsh: ", eigenvectors[:,0])
# print('\n\n')
# %% ############################################ Quantum optimisation ########################################################################
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit.quantum_info.operators import Pauli, SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
def X_op(i, num_qubits):
"""Return an X Pauli operator on the specified qubit in a num-qubit system."""
op_list = ['I'] * num_qubits
op_list[i] = 'X'
return SparsePauliOp(Pauli(''.join(op_list)))
def generate_pauli_zij(n, i, j):
if i<0 or i >= n or j<0 or j>=n:
raise ValueError(f"Indices out of bounds for n={n} qubits. ")
pauli_str = ['I']*n
if i == j:
pauli_str[i] = 'Z'
else:
pauli_str[i] = 'Z'
pauli_str[j] = 'Z'
return Pauli(''.join(pauli_str))
q_hamiltonian = SparsePauliOp(Pauli('I'*num_qubits), coeffs=[0])
for i in range(num_qubits):
for j in range(i+1, num_qubits):
if M[i][j] != 0:
pauli = generate_pauli_zij(num_qubits, i, j)
op = SparsePauliOp(pauli, coeffs=[M[i][j]])
q_hamiltonian += op
for i in range(num_qubits):
pauli = generate_pauli_zij(num_qubits, i, i)
Z_i = SparsePauliOp(pauli, coeffs=[M[i][i]])
q_hamiltonian += Z_i
def format_sparsepauliop(op):
terms = []
labels = [pauli.to_label() for pauli in op.paulis]
coeffs = op.coeffs
for label, coeff in zip(labels, coeffs):
terms.append(f"{coeff:.10f} * {label}")
return '\n'.join(terms)
print(f"\nThe hamiltonian constructed using Pauli operators is: \n", format_sparsepauliop(q_hamiltonian))
#the mixer in QAOA should be a quantum operator representing transitions between configurations
mixer_op = sum(X_op(i,num_qubits) for i in range(num_qubits))
p = 1 # Number of QAOA layers
initial_point = np.ones(2 * p)
# %%
start_time = time.time()
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result = qaoa.compute_minimum_eigenvalue(q_hamiltonian)
end_time = time.time()
print("\n\nThe result of the quantum optimisation using QAOA is: \n")
print('best measurement', result.best_measurement)
elapsed_time = end_time - start_time
print(f"Local Simulation run time: {elapsed_time} seconds")
print('\n\n')
# %% ############################################ Simulators ##########################################################################
from qiskit_aer import Aer
from qiskit_ibm_provider import IBMProvider
from qiskit_aer.noise import NoiseModel
from qiskit_aer.primitives import Sampler
from qiskit.primitives import Sampler, BackendSampler
from qiskit.transpiler import PassManager
simulator = Aer.get_backend('qasm_simulator')
provider = IBMProvider()
available_backends = provider.backends()
print("Available Backends:", available_backends)
device_backend = provider.get_backend('ibm_torino')
noise_model = NoiseModel.from_backend(device_backend)
options= {
"noise_model": noise_model,
"basis_gates": simulator.configuration().basis_gates,
"coupling_map": simulator.configuration().coupling_map,
"seed_simulator": 42,
"shots": 1000,
"optimization_level": 3,
"resilience_level": 0
}
noisy_sampler = BackendSampler(backend=simulator, options=options, bound_pass_manager=PassManager())
start_time1 = time.time()
qaoa1 = QAOA(sampler=noisy_sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result1 = qaoa1.compute_minimum_eigenvalue(q_hamiltonian)
end_time1 = time.time()
print("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
print('best measurement', result1.best_measurement)
print('Optimal parameters: ', result1.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result1.best_measurement['value']))
elapsed_time1 = end_time1 - start_time1
print(f"Aer Simulator run time: {elapsed_time1} seconds")
print('\n\n')
# %%