forked from anastasiaangelo/ProjectAnastasia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
local_penalty_3rot.py
458 lines (369 loc) · 19.5 KB
/
local_penalty_3rot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Point 2 of constraint studies for paper, Ising model with local penalties, 3 rotamers per residue
# Script to optimise the Hamiltonian, starting directly from the Ising Hamiltonian
# Change file paths, run cells for simulations/hardware
# %%
import numpy as np
import pandas as pd
import time
from copy import deepcopy
import os
num_rot = 3
file_path = "RESULTS/3rot-localpenalty-QAOA/7res-3rot.csv"
file_path_depth = "RESULTS/Depths/3rot-localpenalty-QAOA-noopt/10res-3rot.csv"
########################### Configure the hamiltonian from the values calculated classically with pyrosetta ############################
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N = int(num/num_rot)
num_qubits = num
print('Qii values: \n', q)
df2 = pd.read_csv("energy_files/two_body_terms.csv")
value = df2['E_ij'].values
Q = np.zeros((num,num))
n = 0
for j in range(0, num-3, num_rot):
for i in range(j, j+num_rot):
Q[i][j+3] = deepcopy(value[n])
Q[j+3][i] = deepcopy(value[n])
Q[i][j+4] = deepcopy(value[n+1])
Q[j+4][i] = deepcopy(value[n+1])
Q[i][j+5] = deepcopy(value[n+2])
Q[j+5][i] = deepcopy(value[n+2])
n += num_rot
print('\nQij values: \n', Q)
H = np.zeros((num,num))
for i in range(num):
for j in range(num):
if i != j:
H[i][j] = np.multiply(0.25, Q[i][j])
for i in range(num):
H[i][i] = -(0.5 * q[i] + sum(0.25 * Q[i][j] for j in range(num) if j != i))
print('\nH: \n', H)
# add penalty terms to the matrix so as to discourage the selection of two rotamers on the same residue - implementation of the Hammings constraint
def add_penalty_term(M, penalty_constant, residue_pairs):
for i, j in residue_pairs:
M[i][j] += penalty_constant
M[j][i] += penalty_constant
return M
def generate_pairs(N):
pairs = []
for i in range(0, 3*N, 3):
pairs.append((i, i+1)) # Pair (x1, x2)
pairs.append((i, i+2)) # Pair (x1, x3)
pairs.append((i+1, i+2)) # Pair (x2, x3)
return pairs
P = 6
pairs = generate_pairs(N)
M = deepcopy(H)
M = add_penalty_term(M, P, pairs)
print("Modified Hamiltonian with Penalties:\n", M)
k = 0
for i in range(num_qubits):
k += 0.5 * q[i]
for i in range(num_qubits):
for j in range(num_qubits):
if i != j:
k += 0.5 * 0.25 * Q[i][j]
# %% ############################################ Quantum optimisation ########################################################################
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit.quantum_info.operators import Pauli, SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
def X_op(i, num_qubits):
"""Return an X Pauli operator on the specified qubit in a num-qubit system."""
op_list = ['I'] * num_qubits
op_list[i] = 'X'
return SparsePauliOp(Pauli(''.join(op_list)))
def generate_pauli_zij(n, i, j):
if i<0 or i >= n or j<0 or j>=n:
raise ValueError(f"Indices out of bounds for n={n} qubits. ")
pauli_str = ['I']*n
if i == j:
pauli_str[i] = 'Z'
else:
pauli_str[i] = 'Z'
pauli_str[j] = 'Z'
return Pauli(''.join(pauli_str))
q_hamiltonian = SparsePauliOp(Pauli('I'*num_qubits), coeffs=[0])
for i in range(num_qubits):
for j in range(i+1, num_qubits):
if M[i][j] != 0:
pauli = generate_pauli_zij(num_qubits, i, j)
op = SparsePauliOp(pauli, coeffs=[M[i][j]])
q_hamiltonian += op
for i in range(num_qubits):
pauli = generate_pauli_zij(num_qubits, i, i)
Z_i = SparsePauliOp(pauli, coeffs=[M[i][i]])
q_hamiltonian += Z_i
def format_sparsepauliop(op):
terms = []
labels = [pauli.to_label() for pauli in op.paulis]
coeffs = op.coeffs
for label, coeff in zip(labels, coeffs):
terms.append(f"{coeff:.10f} * {label}")
return '\n'.join(terms)
print(f"\nThe hamiltonian constructed using Pauli operators is: \n", format_sparsepauliop(q_hamiltonian))
mixer_op = sum(X_op(i,num_qubits) for i in range(num_qubits))
p = 1 # Number of QAOA layers
initial_point = np.ones(2 * p)
# %% Local simulation, too slow when big sizes
start_time = time.time()
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result = qaoa.compute_minimum_eigenvalue(q_hamiltonian)
end_time = time.time()
print("\n\nThe result of the quantum optimisation using QAOA is: \n")
print('best measurement', result.best_measurement)
print('The ground state energy with QAOA is: ', np.real(result.best_measurement['value'] + N*P + k))
elapsed_time = end_time - start_time
print(f"Local Simulation run time: {elapsed_time} seconds")
print('\n\n')
# %% ############################################ Noisy Simulators ##########################################################################
from qiskit_aer import Aer
from qiskit_ibm_provider import IBMProvider
from qiskit_aer.noise import NoiseModel
from qiskit_aer.primitives import Sampler
from qiskit.primitives import Sampler, BackendSampler
from qiskit.transpiler import PassManager
simulator = Aer.get_backend('qasm_simulator')
provider = IBMProvider()
available_backends = provider.backends()
print("Available Backends:", available_backends)
device_backend = provider.get_backend('ibm_torino')
noise_model = NoiseModel.from_backend(device_backend)
options= {
"noise_model": noise_model,
"basis_gates": simulator.configuration().basis_gates,
"coupling_map": simulator.configuration().coupling_map,
"seed_simulator": 42,
"shots": 5000,
"optimization_level": 3,
"resilience_level": 3
}
def callback(quasi_dists, parameters, energy):
intermediate_data.append({
'quasi_distributions': quasi_dists,
'parameters': parameters,
'energy': energy
})
p = 1
noisy_sampler = BackendSampler(backend=simulator, options=options, bound_pass_manager=PassManager())
intermediate_data = []
start_time1 = time.time()
qaoa1 = QAOA(sampler=noisy_sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point, callback=callback)
result1 = qaoa1.compute_minimum_eigenvalue(q_hamiltonian)
end_time1 = time.time()
elapsed_time1 = end_time1 - start_time1
# %%
from qiskit_aer.primitives import Estimator
from qiskit import QuantumCircuit, transpile
def int_to_bitstring(state, total_bits):
"""Converts an integer state to a binary bitstring with padding of leading zeros."""
return format(state, '0{}b'.format(total_bits))
def check_hamming(bitstring, substring_size):
"""Check if each substring contains exactly one '1'."""
substrings = [bitstring[i:i+substring_size] for i in range(0, len(bitstring), substring_size)]
return all(sub.count('1') == 1 for sub in substrings)
def calculate_bitstring_energy(bitstring, hamiltonian, backend=None):
"""
Calculate the energy of a given bitstring for a specified Hamiltonian.
Args:
bitstring (str): The bitstring for which to calculate the energy.
hamiltonian (SparsePauliOp): The Hamiltonian operator of the system, defined as a SparsePauliOp.
backend (qiskit.providers.Backend): The quantum backend to execute circuits.
Returns:
float: The calculated energy of the bitstring.
"""
# Prepare the quantum circuit for the bitstring
num_qubits = len(bitstring)
qc = QuantumCircuit(num_qubits)
for i, char in enumerate(bitstring):
if char == '1':
qc.x(i) # Apply X gate if the bit in the bitstring is 1
# Use Aer's statevector simulator if no backend provided
if backend is None:
backend = Aer.get_backend('aer_simulator_statevector')
qc = transpile(qc, backend)
estimator = Estimator()
resultt = estimator.run(observables=[hamiltonian], circuits=[qc], backend=backend).result()
return resultt.values[0].real
eigenstate_distribution = result1.eigenstate
best_measurement = result1.best_measurement
final_bitstrings = {state: probability for state, probability in eigenstate_distribution.items()}
all_bitstrings = {}
for state, prob in final_bitstrings.items():
bitstring = int_to_bitstring(state, num_qubits)
if check_hamming(bitstring, num_rot):
if bitstring not in all_bitstrings:
all_bitstrings[bitstring] = {'probability': 0, 'energy': 0, 'count': 0}
all_bitstrings[bitstring]['probability'] += prob # Aggregate probabilities
energy = calculate_bitstring_energy(bitstring, q_hamiltonian)
all_bitstrings[bitstring]['energy'] = (all_bitstrings[bitstring]['energy'] * all_bitstrings[bitstring]['count'] + energy) / (all_bitstrings[bitstring]['count'] + 1)
all_bitstrings[bitstring]['count'] += 1
for data in intermediate_data:
print(f"Quasi Distribution: {data['quasi_distributions']}, Parameters: {data['parameters']}, Energy: {data['energy']}")
for distribution in data['quasi_distributions']:
for int_bitstring, probability in distribution.items():
intermediate_bitstring = int_to_bitstring(int_bitstring, num_qubits)
if check_hamming(intermediate_bitstring, num_rot):
if intermediate_bitstring not in all_bitstrings:
all_bitstrings[intermediate_bitstring] = {'probability': 0, 'energy': 0, 'count': 0}
all_bitstrings[intermediate_bitstring]['probability'] += probability # Aggregate probabilities
energy = calculate_bitstring_energy(intermediate_bitstring, q_hamiltonian)
all_bitstrings[intermediate_bitstring]['energy'] = (all_bitstrings[intermediate_bitstring]['energy'] * all_bitstrings[intermediate_bitstring]['count'] + energy) / (all_bitstrings[intermediate_bitstring]['count'] + 1)
all_bitstrings[intermediate_bitstring]['count'] += 1
sorted_bitstrings = sorted(all_bitstrings.items(), key=lambda x: x[1]['energy'])
total_bitstrings = sum(
probability * options['shots']
for data in intermediate_data
for distribution in data['quasi_distributions']
for int_bitstring, probability in distribution.items()
) + sum(
probability * options['shots'] for state, probability in final_bitstrings.items()
)
hamming_satisfying_bitstrings = sum(bitstring_data['probability'] * options['shots'] for bitstring_data in all_bitstrings.values())
fraction_satisfying_hamming = hamming_satisfying_bitstrings / total_bitstrings
print(f"Fraction of bitstrings that satisfy the Hamming constraint: {fraction_satisfying_hamming}")
ground_state_repetition = sorted_bitstrings[0][1]['index']
print("Best Measurement:", best_measurement)
for bitstring, data in sorted_bitstrings:
print(f"Bitstring: {bitstring}, Probability: {data['probability']}, Energy: {data['energy']}")
found = False
for bitstring, data in sorted_bitstrings:
if bitstring == best_measurement['bitstring']:
print('Best measurement bitstring respects Hammings conditions.\n')
print('Ground state energy: ', data['energy']+k)
data = {
"Experiment": ["Aer Simulation Local Penalty QAOA"],
"Ground State Energy": [np.real(result1.best_measurement['value'] + N*P + k)],
"Best Measurement": [result1.best_measurement],
"Execution Time (seconds)": [elapsed_time1],
"Number of qubits": [num_qubits],
"shots": [options['shots']],
"Fraction": [fraction_satisfying_hamming],
"Iteration Ground State": [ground_state_repetition]
}
found = True
break
if not found:
print('Best measurement bitstring does not respect Hammings conditions, take the sorted bitstring corresponding to the smallest energy.\n')
post_selected_bitstring, post_selected_energy = sorted_bitstrings[0]
data = {
"Experiment": ["Aer Simulation Local Penalty QAOA, post-selected"],
"Ground State Energy": [post_selected_energy['energy'] + N*P + k],
"Best Measurement": [post_selected_bitstring],
"Execution Time (seconds)": [elapsed_time1],
"Number of qubits": [num_qubits],
"shots": [options['shots']],
"Fraction": [fraction_satisfying_hamming],
"Iteration Ground State": [ground_state_repetition]
}
df = pd.DataFrame(data)
if not os.path.isfile(file_path):
# File does not exist, write with header
df.to_csv(file_path, index=False)
else:
# File exists, append without writing the header
df.to_csv(file_path, mode='a', index=False, header=False)
# %% ############################################# Hardware with QAOAAnastz ##################################################################
# from qiskit.circuit.library import QAOAAnsatz
# from qiskit_algorithms import SamplingVQE
# from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler
# from qiskit import transpile, QuantumCircuit, QuantumRegister
# from qiskit.transpiler import CouplingMap, Layout
# service = QiskitRuntimeService()
# backend = service.backend("ibm_torino")
# print('Coupling Map of hardware: ', backend.configuration().coupling_map)
# ansatz = QAOAAnsatz(q_hamiltonian, mixer_operator=mixer_op, reps=p)
# print('\n\nQAOAAnsatz: ', ansatz)
# target = backend.target
# ansatz.count_ops
# # %%
# # real_coupling_map = backend.configuration().coupling_map
# # coupling_map = CouplingMap(couplinglist=real_coupling_map)
# def generate_linear_coupling_map(num_qubits):
# coupling_list = [[i, i + 1] for i in range(num_qubits - 1)]
# return CouplingMap(couplinglist=coupling_list)
# linear_coupling_map = generate_linear_coupling_map(num_qubits)
# # coupling_map = CouplingMap(couplinglist=[[0, 1], [0, 15], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3], [4, 5], [4, 16], [5, 4], [5, 6], [6, 5], [6, 7], [7, 6], [7, 8], [8, 7], [8, 9], [8, 17], [9, 8], [9, 10], [10, 9], [10, 11], [11, 10], [11, 12], [12, 11], [12, 13], [13, 12], [13, 14], [14, 13], [15, 0], [16, 4], [17, 8]])
# # coupling_map = CouplingMap(couplinglist=[[0, 1], [0, 15], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3], [4, 5], [4, 16], [5, 4], [5, 6], [6, 5], [6, 7], [7, 6], [7, 8], [8, 7], [8, 9], [8, 17], [9, 8], [9, 10], [10, 9], [10, 11], [11, 10], [11, 12], [12, 11], [12, 13], [12, 18], [13, 12], [13, 14], [14, 13], [15, 0], [15, 19], [16, 4], [17, 8], [18, 12], [19, 15], [19, 20]])
# # coupling_map = CouplingMap(couplinglist=[[0, 1], [0, 15], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3], [4, 5], [4, 16], [5, 4], [5, 6], [6, 5], [6, 7], [7, 6], [7, 8], [8, 7], [8, 9], [8, 17], [9, 8], [9, 10], [10, 9], [10, 11], [11, 10], [11, 12], [12, 11], [12, 13], [12, 18], [13, 12], [13, 14], [14, 13], [15, 0], [15, 19], [16, 4], [16, 23], [17, 8], [18, 12], [19, 15], [19, 20], [20, 19], [20, 21], [21, 20], [21, 22], [22, 21], [22, 23], [23, 16], [23, 22]])
# # coupling_map = CouplingMap(couplinglist=[[0, 1], [0, 15], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3], [4, 5], [4, 16], [5, 4], [5, 6], [6, 5], [6, 7], [7, 6], [7, 8], [8, 7], [8, 9], [8, 17], [9, 8], [9, 10], [10, 9], [10, 11], [11, 10], [11, 12], [12, 11], [12, 13], [12, 18], [13, 12], [13, 14], [14, 13], [15, 0], [15, 19], [16, 4], [16, 23], [17, 8], [17, 27], [18, 12], [19, 15], [19, 20], [20, 19], [20, 21], [21, 20], [21, 22], [22, 21], [22, 23], [23, 16], [23, 22], [23, 24], [24, 23], [24, 25], [25, 24], [25, 26], [26, 25]])
# coupling_map = CouplingMap(couplinglist=[[0, 1], [0, 15], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3], [4, 5], [4, 16], [5, 4], [5, 6], [6, 5], [6, 7], [7, 6], [7, 8], [8, 7], [8, 9], [8, 17], [9, 8], [9, 10], [10, 9], [10, 11], [11, 10], [11, 12], [12, 11], [12, 13], [12, 18], [13, 12], [13, 14], [14, 13], [15, 0], [15, 19], [16, 4], [16, 23], [17, 8], [17, 27], [18, 12], [19, 15], [19, 20], [20, 19], [20, 21], [21, 20], [21, 22], [22, 21], [22, 23], [23, 16], [23, 22], [23, 24], [24, 23], [24, 25], [25, 24], [25, 26], [26, 25], [26, 27], [27, 17], [27, 26], [27, 28], [28, 27], [28, 29], [29, 28]])
# qr = QuantumRegister(num_qubits, 'q')
# circuit = QuantumCircuit(qr)
# trivial_layout = Layout({qr[i]: i for i in range(num_qubits)})
# ansatz_isa = transpile(ansatz, backend=backend, initial_layout=trivial_layout, coupling_map=coupling_map,
# optimization_level=0, layout_method='dense', routing_method='basic')
# print("\n\nAnsatz layout after explicit transpilation:", ansatz_isa._layout)
# hamiltonian_isa = q_hamiltonian.apply_layout(ansatz_isa.layout)
# print("\n\nAnsatz layout after transpilation:", hamiltonian_isa)
# # %%
# ansatz_isa.decompose().draw('mpl')
# op_counts = ansatz_isa.count_ops()
# total_gates = sum(op_counts.values())
# CNOTs = op_counts['cz']
# depth = ansatz_isa.depth()
# print("Operation counts:", op_counts)
# print("Total number of gates:", total_gates)
# print("Depth of the circuit: ", depth)
# data_depth = {
# "Experiment": ["Hardware XY-QAOA"],
# "Total number of gates": [total_gates],
# "Depth of the circuit": [depth],
# "CNOTs": [CNOTs]
# }
# df_depth = pd.DataFrame(data_depth)
# df_depth.to_csv(file_path_depth, index=False)
# # %%
# session = Session(backend=backend)
# print('\nhere 1')
# sampler = Sampler(backend=backend, session=session)
# print('here 2')
# qaoa2 = SamplingVQE(sampler=sampler, ansatz=ansatz_isa, optimizer=COBYLA(), initial_point=initial_point)
# print('here 3')
# result2 = qaoa2.compute_minimum_eigenvalue(hamiltonian_isa)
# print("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
# print('best measurement', result2.best_measurement)
# print('Optimal parameters: ', result2.optimal_parameters)
# print('The ground state energy with noisy QAOA is: ', np.real(result2.best_measurement['value']) + N*P + k)
# # %%
# jobs = service.jobs(session_id='crsn8xvx484g008f4200')
# for job in jobs:
# if job.status().name == 'DONE':
# results = job.result()
# print("Job completed successfully")
# else:
# print("Job status:", job.status())
# # %%
# total_usage_time = 0
# for job in jobs:
# job_result = job.usage_estimation['quantum_seconds']
# total_usage_time += job_result
# print(f"Total Usage Time Hardware: {total_usage_time} seconds")
# print('\n\n')
# with open(file_path, "a") as file:
# file.write("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
# file.write(f"'best measurement' {result2.best_measurement}")
# file.write(f"Optimal parameters: {result2.optimal_parameters}")
# file.write(f"'The ground state energy with noisy QAOA is: ' {np.real(result2.best_measurement['value']) + N*P + k}")
# file.write(f"Total Usage Time Hardware: {total_usage_time} seconds")
# file.write(f"Total number of gates: {total_gates}\n")
# file.write(f"Depth of circuit: {depth}\n")
# # %%
# index = ansatz_isa.layout.final_index_layout() # Maps logical qubit index to its position in bitstring
# measured_bitstring = result2.best_measurement['bitstring']
# original_bitstring = ['']*num_qubits
# for i, logical in enumerate(index):
# original_bitstring[i] = measured_bitstring[logical]
# original_bitstring = ''.join(original_bitstring)
# print("Original bitstring:", original_bitstring)
# data = {
# "Experiment": ["Quantum Optimisation (QAOA)", "Noisy Quantum Optimisation (Aer Simulator)", "Quantum Optimisation (QAOAAnsatz)"],
# "Ground State Energy": [result.optimal_value + k, np.real(result1.best_measurement['value'] + k), np.real(result2.best_measurement['value'])],
# "Best Measurement": [result.optimal_parameters, result1.best_measurement, result2.best_measurement],
# "Optimal Parameters": ["N/A", "N/A", result2.optimal_parameters],
# "Execution Time (seconds)": [elapsed_time, elapsed_time1, total_usage_time],
# "Total Gates": ["N/A", total_gates, total_gates],
# "Circuit Depth": ["N/A", depth, depth]
# }
# df.to_csv(file_path, index=False)